一、初始递归

递归函数:在一个函数里在调用这个函数本身。

递归的最大深度:998

正如你们刚刚看到的,递归函数如果不受到外力的阻止会一直执行下去。但是我们之前已经说过关于函数调用的问题,每一次函数调用都会产生一个属于它自己的名称空间,如果一直调用下去,就会造成名称空间占用太多内存的问题,于是python为了杜绝此类现象,强制的将递归层数控制在了997(只要997!你买不了吃亏,买不了上当...).

拿什么来证明这个“998理论”呢?这里我们可以做一个实验:

def foo(n):
print(n)
n += 1
foo(n)
foo(1)

由此我们可以看出,未报错之前能看到的最大数字就是998.当然了,997是python为了我们程序的内存优化所设定的一个默认值,我们当然还可以通过一些手段去修改它:

import sys
print(sys.setrecursionlimit(100000))

我们可以通过这种方式来修改递归的最大深度,刚刚我们将python允许的递归深度设置为了10w,至于实际可以达到的深度就取决于计算机的性能了。不过我们还是不推荐修改这个默认的递归深度,因为如果用997层递归都没有解决的问题要么是不适合使用递归来解决要么是你代码写的太烂了~~~

看到这里,你可能会觉得递归也并不是多么好的东西,不如while True好用呢!然而,江湖上流传这这样一句话叫做:人理解循环,神理解递归。所以你可别小看了递归函数,很多人被拦在大神的门槛外这么多年,就是因为没能领悟递归的真谛。而且之后我们学习的很多算法都会和递归有关系。来吧,只有学会了才有资本嫌弃!

二、递归示例讲解

这里我们又要举个例子来说明递归能做的事情。

例一:

现在你们问我,alex老师多大了?我说我不告诉你,但alex比 egon 大两岁。

你想知道alex多大,你是不是还得去问egon?egon说,我也不告诉你,但我比武sir大两岁。

你又问武sir,武sir也不告诉你,他说他比太白大两岁。

那你问太白,太白告诉你,他18了。

这个时候你是不是就知道了?alex多大?

1 金鑫 18
2 武sir 20
3 egon 22
4 alex 24

你为什么能知道的?

首先,你是不是问alex的年龄,结果又找到egon、武sir、太白,你挨个儿问过去,一直到拿到一个确切的答案,然后顺着这条线再找回来,才得到最终alex的年龄。这个过程已经非常接近递归的思想。我们就来具体的我分析一下,这几个人之间的规律。

age(4) = age(3) + 2
age(3) = age(2) + 2
age(2) = age(1) + 2
age(1) = 40

那这样的情况,我们的函数怎么写呢?

def age(n):
if n == 1:
return 40
else:
return age(n-1)+2 print(age(4))

如果有这样一个列表,让你从这个列表中找到66的位置,你要怎么做?

l = [2,3,5,10,15,16,18,22,26,30,32,35,41,42,43,55,56,66,67,69,72,76,82,83,88]

你说,so easy!

l.index(66)...

我们之所以用index方法可以找到,是因为python帮我们实现了查找方法。如果,index方法不给你用了。。。你还能找到这个66么?

l = [2,3,5,10,15,16,18,22,26,30,32,35,41,42,43,55,56,66,67,69,72,76,82,83,88]

i = 0
for num in l:
if num == 66:
print(i)
i+=1

上面这个方法就实现了从一个列表中找到66所在的位置了。

但我们现在是怎么找到这个数的呀?是不是循环这个列表,一个一个的找的呀?假如我们这个列表特别长,里面好好几十万个数,那我们找一个数如果运气不好的话是不是要对比十几万次?这样效率太低了,我们得想一个新办法。

二分查找算法

l = [2,3,5,10,15,16,18,22,26,30,32,35,41,42,43,55,56,66,67,69,72,76,82,83,88]

你观察这个列表,这是不是一个从小到大排序的有序列表呀?

如果这样,假如我要找的数比列表中间的数还大,是不是我直接在列表的后半边找就行了?

这就是二分查找算法

那么落实到代码上我们应该怎么实现呢?

简单版二分法

l = [2,3,5,10,15,16,18,22,26,30,32,35,41,42,43,55,56,66,67,69,72,76,82,83,88]

def func(l,aim):
mid = (len(l)-1)//2
if l:
if aim > l[mid]:
func(l[mid+1:],aim)
elif aim < l[mid]:
func(l[:mid],aim)
elif aim == l[mid]:
print("bingo",mid)
else:
print('找不到')
func(l,66)
func(l,6)

升级版二分法

l1 = [1, 2, 4, 5, 7, 9]
def two_search(l,aim,start=0,end=None):
end = len(l)-1 if end is None else end
mid_index = (end - start) // 2 + start
if end >= start:
if aim > l[mid_index]:
return two_search(l,aim,start=mid_index+1,end=end) elif aim < l[mid_index]:
return two_search(l,aim,start=start,end=mid_index-1) elif aim == l[mid_index]:
return mid_index
else:
return '没有此值'
else:
return '没有此值'
print(two_search(l1,9))

我的博客即将搬运同步至腾讯云+社区,邀请大家一同入驻:https://cloud.tencent.com/developer/support-plan

Python递归函数,二分查找算法的更多相关文章

  1. python实现二分查找算法

    二分查找算法也成为折半算法,对数搜索算法,一会中在有序数组中查找特定一个元素的搜索算法.搜索过程是从数组中间元素开始的 如果中间元素正好是要查找的元素,则搜索过程结束:如果查找的数大于中间数,则在数组 ...

  2. 【Python】二分查找算法

    二分查找:在一段数字内,找到中间值,判断要找的值和中间值大小的比较.如果中间值大一些,则在中间值的左侧区域继续按照上述方式查找.如果中间值小一些,则在中间值的右侧区域继续按照上述方式查找.直到找到我们 ...

  3. python函数(4):递归函数及二分查找算法

    人理解循环,神理解递归!  一.递归的定义 def story(): s = """ 从前有个山,山里有座庙,庙里老和尚讲故事, 讲的什么呢? ""& ...

  4. Python递归函数和二分查找算法

    递归函数:在一个函数里在调用这个函数本身. 递归的最大深度:998 正如你们刚刚看到的,递归函数如果不受到外力的阻止会一直执行下去.但是我们之前已经说过关于函数调用的问题,每一次函数调用都会产生一个属 ...

  5. Python学习日记(十三) 递归函数和二分查找算法

    什么是递归函数? 简单来说就是在一个函数中重复的调用自己本身的函数 递归函数在调用的时候会不断的开内存的空间直到程序结束或递归到一个次数时会报错 计算可递归次数: i = 0 def func(): ...

  6. 用Python实现的二分查找算法(基于递归函数)

    一.递归的定义 1.什么是递归:在一个函数里在调用这个函数本身 2.最大递归层数做了一个限制:997,但是也可以自己限制 1 def foo(): 2 print(n) 3 n+=1 4 foo(n) ...

  7. python 全栈开发,Day15(递归函数,二分查找法)

    一.递归函数 江湖上流传这这样一句话叫做:人理解循环,神理解递归.所以你可别小看了递归函数,很多人被拦在大神的门槛外这么多年,就是因为没能领悟递归的真谛. 递归函数:在一个函数里执行再调用这个函数本身 ...

  8. Python——递归、二分查找算法

    递归函数 1. 递归 (1)什么是递归:在函数中调用自身函数(2)最大递归深度:默认997/998——是Python从内存角度出发做的限制 n = 0 def story(): global n n+ ...

  9. 二分查找算法(Python版)

    [本文出自天外归云的博客园] 记性不好(@.@),所以平时根本用不到的东西就算学过如果让我去想也会需要很多时间(*.*)! 二分查找算法 在一个有序数组中查找元素最快的算法,也就是折半查找法,先找一个 ...

随机推荐

  1. 【Aizu - 0033】Ball (简单搜索)

    -->Ball 原文是日语,这里直接写中文了 Descriptions: 如图所示,容器中间有一枢轴,下方分为两路.容器上方开口,从1到10连续编号的小球从容器开口A放入.通过调整枢轴E的方向, ...

  2. KdTree && Octree 原理学习对比以及可视化分析--"索引树"

    1. Kdtree 原理 k-d树(k-dimensional树的简称),是一种分割k维数据空间的数据结构.主要应用于多维空间关键数据的搜索(如:范围搜索和最近邻搜索): 索引结构中相似性查询有两种基 ...

  3. 【基本数据结构-集合(set)详解】-C++

    集合是数学中的一个基本概念,通俗地理解,集合是由一些不重复的数据组成的.比如 就是{1,2,3} 一个有1,2,3三个元素的集合. 在 C++ 中我们常用的集合是 set . 它包含在头文件#incl ...

  4. python+selenium 批量执行时出现随机报错问题【已解决】

    出现场景:用discover方法批量执行py文件,出现随机性的报错(有时a.py报错,有时b.py报错...),共同特点:均是打开新窗口后,切换最新窗口,但定位不到新窗口的元素,超时报错.由于个人项目 ...

  5. 整型,布尔值,字符串详解,for语句

    整型 -- 数字 用于比较和计算 + - * / // python 2 int --- long (长整型) /获取的是整数 Python3 int---整型 / 获取的浮点数 二进制 --- 就是 ...

  6. Lucene04-Lucene的基本使用

    Lucene04-Lucene的基本使用 导入的包 import org.apache.lucene.analysis.standard.StandardAnalyzer; import org.ap ...

  7. 个人永久性免费-Excel催化剂功能第83波-遍历文件夹内文件信息特别是图像、音视频等特有信息

    在过往的功能中,有体现出在Excel上管理文件的极大优势,在文件的信息元数据中,有图片和音视频这两类特有的属性数据,此篇对过往功能的一个补充,特别增加了图片和音视频信息的遍历功能. 使用场景 在文件管 ...

  8. C#3.0新增功能09 LINQ 基础02 LINQ 查询简介

    连载目录    [已更新最新开发文章,点击查看详细] 查询 是一种从数据源检索数据的表达式. 查询通常用专门的查询语言来表示. 随着时间的推移,人们已经为各种数据源开发了不同的语言:例如,用于关系数据 ...

  9. CSS画出三角形(利用Border)

    画出三角形的原理是调整border(边框)的四个方向的宽度,线条样式以及颜色. 如果你将宽度调的足够大,改变不同方向的颜色,你就可以发现盒模型的border是四个梯形一样的线条. div{ width ...

  10. 01、HTML 简介

    实例: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title ...