在自己的数据集上训练一个新的深度学习模型时,一般采取在预训练好的模型上进行微调的方法。什么是微调?这里已VGG16为例进行讲解,下面贴出VGGNet结构示意图。  

   

  上面圈出来的是VGG16示意图,也可以用如下两个图表示。

   

   

  如上图所示 ,VGG16的结构为卷积+全连接层。卷积层分为5个部分共13层,即图中的conv1~conv5。还有3层是全连接层,即图中的fc6、fc7、fc8。卷积层加上全连接层合起来一共为16层,因此它被称为VGG16。如果要将VGG16的结构用于一个新的数据集,首先要去掉fc8这一层。原因是fc8层的输入是fc7的特征,输出是1000类的概率,这1000类正好对应了ImageNet模型中的1000个类别。在自己的数据中,类别数一般不是1000类,因此fc8层的结构在此时是不适用的,必须将fc8层去掉,重新采用符合数据集类别数的全连接层,作为新的fc8。比如数据集为5类,那么新的fc8的输出也应当是5类。

  此外,在训练的时候,网络的参数的初始值并不是随机化生成的,而是采用VGG16在ImageNet上已经训练好的参数作为训练的初始值。这样做的原因在于,在ImageNet数据集上训练过的VGG16中的参数已经包含了大量有用的卷积过滤器,与其从零开始初始化VGG16的所有参数,不如使用已经训练好的参数当作训练的起点。这样做不仅可以节约大量训练时间,而且有助于分类器性能的提高。

  载入VGG16的参数后,就可以开始训练了。此时需要指定训练层数的范围。一般来说,可以选择以下几种范围进行训练:

  (1):只训练fc8。训练范围一定要包含fc8这一层。因为fc8的结构被调整过,所有它的参数不能直接从ImageNet预训练模型中取得。可以只训练fc8,保持其他层的参数不动。这就相当于将VGG16当作一个“特征提取器”:用fc7层提取的特征做一个Softmax模型分类。这样做的好处是训练速度快,但往往性能不会太好。
  (2):训练所有参数。还可以对网络中的所有参数进行训练,这种方法的训练速度可能比较慢,但是能取得较高的性能,可以充分发挥深度模型的威力。
  (3):训练部分参数。通常是固定浅层参数不变,训练深层参数。如固定conv1、conv2部分的参数不训练,只训练conv3、conv4、conv5、fc6、fc7、fc8的参数

  微调的原理大致意思就是先看懂网络的结构图,然后把网络的一部分修改成自己需要的模型。这种训练方法就是所谓的对神经网络模型做微调。借助微调,可以从预训练模型出发,将神经网络应用到自己的数据集上。

微调(Fine-tune)原理的更多相关文章

  1. [机器学习]Fine Tune

    Fine Tune顾名思义,就是微调.在机器学习中,一般用在迁移学习中,通过控制一些layer调节一些layer来达到迁移学习的目的.这样可以利用已有的参数,稍微变化一些,以适应新的学习任务.所以说, ...

  2. caffe简易上手指南(三)—— 使用模型进行fine tune

    之前的教程我们说了如何使用caffe训练自己的模型,下面我们来说一下如何fine tune. 所谓fine tune就是用别人训练好的模型,加上我们自己的数据,来训练新的模型.fine tune相当于 ...

  3. caffe fine tune 复制预训练model的参数和freeze指定层参数

    复制预训练model的参数,只需要重新copy一个train_val.prototxt.然后把不需要复制的层的名字改一下,如(fc7 -> fc7_new),然后fine tune即可. fre ...

  4. L23模型微调fine tuning

    resnet185352 链接:https://pan.baidu.com/s/1EZs9XVUjUf1MzaKYbJlcSA 提取码:axd1 9.2 微调 在前面的一些章节中,我们介绍了如何在只有 ...

  5. [NLP] TextCNN模型原理和实现

    1. 模型原理 1.1 论文 Yoon Kim在论文(2014 EMNLP) Convolutional Neural Networks for Sentence Classification提出Te ...

  6. 【原创】TextCNN原理详解(一)

    ​ 最近一直在研究textCNN算法,准备写一个系列,每周更新一篇,大致包括以下内容: TextCNN基本原理和优劣势 TextCNN代码详解(附Github链接) TextCNN模型实践迭代经验总结 ...

  7. (原)torch中微调某层参数

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6221664.html 参考网址: https://github.com/torch/nn/issues ...

  8. 深度学习笔记(六)finetune

    转自Caffe fine-tuning 微调网络 一般来说我们自己需要做的方向,比如在一些特定的领域的识别分类中,我们很难拿到大量的数据.因为像在ImageNet上毕竟是一个千万级的图像数据库,通常我 ...

  9. 目标检测(六)YOLOv2__YOLO9000: Better, Faster, Stronger

    项目链接 Abstract 在该论文中,作者首先介绍了对YOLOv1检测系统的各种改进措施.改进后得到的模型被称为YOLOv2,它使用了一种新颖的多尺度训练方法,使得模型可以在不同尺寸的输入上运行,并 ...

  10. 【目标检测】R-CNN系列与SPP-Net总结

    目录 1. 前言 2. R-CNN 2.0 论文链接 2.1 概述 2.2 pre-training 2.3 不同阶段正负样本的IOU阈值 2.4 关于fine-tuning 2.5 对文章的一些思考 ...

随机推荐

  1. Linux面试题-8

    1.Linux文件系统的文件都按其作用分门别类地放在相关的目录中,对于磁盘这种外部设备文件,一般应将其放在(C)目录中. A./bin B./etc C./dev D./lib 2.当使用mount进 ...

  2. WSL捣鼓记——图形化(以emacs为例)

    前言 这学期开始学习linux,但笔记本装了双系统之后指纹识别会失效,开虚拟机又十分占据内存,于是乎基本需要使用linux的时候就用wsl,可奈何只有命令行界面,在需要使用图形软件(如emacs)的时 ...

  3. chrome devtools tip(2)--自定义代码片段,构建你的工具箱

    平常开发中,有些代码片段常常用到的,比如,获取 url 参数,rgb转16进制,打印下当前页面的性能数据,给所有的 span 加个样式, 防抖节流,fetch接口,类似 jquery这样的顺手 选择 ...

  4. HTTP协议详解(二)—— HTTP响应

    HTTP响应(Response) 响应与请求一样分成三个部分:响应行.响应头.响应体. 1.响应行: 格式 - HTTP/1.1 200 OK 2.响应头: 部分头属性解释 - Location:这个 ...

  5. 百万年薪python之路 -- 面向对象之三大特性

    1.面向对象之三大特性 1.1封装 封装:就是把一堆代码和数据,放在一个空间,并且可以使用 对于面向对象的封装来说,其实就是使用构造方法将内容封装到 对象 中,然后通过对象直接或者self间接获取被封 ...

  6. CasperJS 前端功能测试

    CasperJS 是一个开源的导航脚本和测试组件.它提供实用的高级函数.方法和语法糖,可完成以下任务: 对浏览导航步骤的定义和排序 填写和提交表单 点击和跟踪链接 获取页面快照(或者页面中的某部分) ...

  7. Spring Boot WebFlux 2.1.7 中文翻译文档

    1. 前言 从一开始学习 Netty 到 rxjava.Rector,再到 java8 的 CompletableFuture,就深深的为响应式编程着迷,这种区别于传统的顺序式编程,没准未来能在编程世 ...

  8. 2018.8.15 python 中的sorted()、filter()、map()函数

    主要内容: 1.lambda匿名函数 2.sorted() 3.filter() 4.map() 5.递归函数 一. lambda匿名函数 为了解决一些简单的需求而设计的一句话函数 # 计算n的n次方 ...

  9. 不需要怎么修改配置的Mybatis整合Spring要点

    首先对于Mybatis的主配置文件,只需要修改一处地方,将事务交给Spring管理,其它地方可以原封不动. <?xml version="1.0" encoding=&quo ...

  10. 学习笔记48_Memcache跟用户登录模块结合

    public interface ICacheWriter {  void AddCache(string key,object value, DateTime expDate);  void Add ...