在自己的数据集上训练一个新的深度学习模型时,一般采取在预训练好的模型上进行微调的方法。什么是微调?这里已VGG16为例进行讲解,下面贴出VGGNet结构示意图。  

   

  上面圈出来的是VGG16示意图,也可以用如下两个图表示。

   

   

  如上图所示 ,VGG16的结构为卷积+全连接层。卷积层分为5个部分共13层,即图中的conv1~conv5。还有3层是全连接层,即图中的fc6、fc7、fc8。卷积层加上全连接层合起来一共为16层,因此它被称为VGG16。如果要将VGG16的结构用于一个新的数据集,首先要去掉fc8这一层。原因是fc8层的输入是fc7的特征,输出是1000类的概率,这1000类正好对应了ImageNet模型中的1000个类别。在自己的数据中,类别数一般不是1000类,因此fc8层的结构在此时是不适用的,必须将fc8层去掉,重新采用符合数据集类别数的全连接层,作为新的fc8。比如数据集为5类,那么新的fc8的输出也应当是5类。

  此外,在训练的时候,网络的参数的初始值并不是随机化生成的,而是采用VGG16在ImageNet上已经训练好的参数作为训练的初始值。这样做的原因在于,在ImageNet数据集上训练过的VGG16中的参数已经包含了大量有用的卷积过滤器,与其从零开始初始化VGG16的所有参数,不如使用已经训练好的参数当作训练的起点。这样做不仅可以节约大量训练时间,而且有助于分类器性能的提高。

  载入VGG16的参数后,就可以开始训练了。此时需要指定训练层数的范围。一般来说,可以选择以下几种范围进行训练:

  (1):只训练fc8。训练范围一定要包含fc8这一层。因为fc8的结构被调整过,所有它的参数不能直接从ImageNet预训练模型中取得。可以只训练fc8,保持其他层的参数不动。这就相当于将VGG16当作一个“特征提取器”:用fc7层提取的特征做一个Softmax模型分类。这样做的好处是训练速度快,但往往性能不会太好。
  (2):训练所有参数。还可以对网络中的所有参数进行训练,这种方法的训练速度可能比较慢,但是能取得较高的性能,可以充分发挥深度模型的威力。
  (3):训练部分参数。通常是固定浅层参数不变,训练深层参数。如固定conv1、conv2部分的参数不训练,只训练conv3、conv4、conv5、fc6、fc7、fc8的参数

  微调的原理大致意思就是先看懂网络的结构图,然后把网络的一部分修改成自己需要的模型。这种训练方法就是所谓的对神经网络模型做微调。借助微调,可以从预训练模型出发,将神经网络应用到自己的数据集上。

微调(Fine-tune)原理的更多相关文章

  1. [机器学习]Fine Tune

    Fine Tune顾名思义,就是微调.在机器学习中,一般用在迁移学习中,通过控制一些layer调节一些layer来达到迁移学习的目的.这样可以利用已有的参数,稍微变化一些,以适应新的学习任务.所以说, ...

  2. caffe简易上手指南(三)—— 使用模型进行fine tune

    之前的教程我们说了如何使用caffe训练自己的模型,下面我们来说一下如何fine tune. 所谓fine tune就是用别人训练好的模型,加上我们自己的数据,来训练新的模型.fine tune相当于 ...

  3. caffe fine tune 复制预训练model的参数和freeze指定层参数

    复制预训练model的参数,只需要重新copy一个train_val.prototxt.然后把不需要复制的层的名字改一下,如(fc7 -> fc7_new),然后fine tune即可. fre ...

  4. L23模型微调fine tuning

    resnet185352 链接:https://pan.baidu.com/s/1EZs9XVUjUf1MzaKYbJlcSA 提取码:axd1 9.2 微调 在前面的一些章节中,我们介绍了如何在只有 ...

  5. [NLP] TextCNN模型原理和实现

    1. 模型原理 1.1 论文 Yoon Kim在论文(2014 EMNLP) Convolutional Neural Networks for Sentence Classification提出Te ...

  6. 【原创】TextCNN原理详解(一)

    ​ 最近一直在研究textCNN算法,准备写一个系列,每周更新一篇,大致包括以下内容: TextCNN基本原理和优劣势 TextCNN代码详解(附Github链接) TextCNN模型实践迭代经验总结 ...

  7. (原)torch中微调某层参数

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6221664.html 参考网址: https://github.com/torch/nn/issues ...

  8. 深度学习笔记(六)finetune

    转自Caffe fine-tuning 微调网络 一般来说我们自己需要做的方向,比如在一些特定的领域的识别分类中,我们很难拿到大量的数据.因为像在ImageNet上毕竟是一个千万级的图像数据库,通常我 ...

  9. 目标检测(六)YOLOv2__YOLO9000: Better, Faster, Stronger

    项目链接 Abstract 在该论文中,作者首先介绍了对YOLOv1检测系统的各种改进措施.改进后得到的模型被称为YOLOv2,它使用了一种新颖的多尺度训练方法,使得模型可以在不同尺寸的输入上运行,并 ...

  10. 【目标检测】R-CNN系列与SPP-Net总结

    目录 1. 前言 2. R-CNN 2.0 论文链接 2.1 概述 2.2 pre-training 2.3 不同阶段正负样本的IOU阈值 2.4 关于fine-tuning 2.5 对文章的一些思考 ...

随机推荐

  1. ASP.NET Core 3.0 一个 jwt 的轻量角色/用户、单个API控制的授权认证库

    目录 说明 一.定义角色.API.用户 二.添加自定义事件 三.注入授权服务和中间件 三.如何设置API的授权 四.添加登录颁发 Token 五.部分说明 六.验证 说明 ASP.NET Core 3 ...

  2. python之ORM(对象关系映射)

    实现了数据模型与数据库的解耦,通过简单的配置就可以轻松更换数据库,而不需要更改代码.orm操作本质上会根据对接的数据库引擎,翻译成对应的sql语句.所有使用Django开发的项目无需关心程序底层使用的 ...

  3. Spring的几种初始化和销毁方法

    一 指定初始化和销毁方法 通过@Bean指定init-method和destroy-method: @Bean(initMethod="init",destroyMethod=&q ...

  4. MSF系列--MS17_010利用模块笔记

    1.   auxiliary/scanner/smb/smb_ms17_010      //扫描检测漏洞辅助模块 扫描结果这里可以看到 2,3,4这几台主机存在此漏洞! 2.     auxilia ...

  5. 学习笔记30_ORM框架

    *在以往DAL层中,操作数据库使用DataTable,如果使得数据表DataTable转为List<>的话,写错属性名,在编译阶段是查不出来的,而ORM框架能解决此问题. *ORM是指面向 ...

  6. [2018-03-08] virtualenv

    virtualenv 的有点 1.使不同应用开发环境独立 2.环境升级不影响其他应用,也不会影响全局的python环境 3.它可以防止系统中出现包管理混乱和版本的冲突 新建    virtualenv ...

  7. vim编辑器介绍

    所有的 Unix Like 系统都会内建 vi 文书编辑器,其他的文书编辑器则不一定会存在. 但是目前我们使用比较多的是 vim 编辑器. vim 具有程序编辑的能力,可以主动的以字体颜色辨别语法的正 ...

  8. SP5150 JMFILTER - Junk-Mail Filte(并查集)

    直秒并查集.这题的难点就在于怎么删点.如果要删的是叶节点,那还好,直接刨掉即可 如果是中间节点甚至是根节点,那就不好办了..... solution: 对于独立一个点,我可以用邻接表模拟,然后用并查集 ...

  9. jquery获取input输入框中的值

    如何用javascript获取input输入框中的值,js/jq通过name.id.class获取input输入框中的value 先准备一段 HTML <input type="tex ...

  10. Golang 基础学习笔记(2)| 如何安装Go工具

    可参考官网:http://docscn.studygolang.com/doc/install#安装 1.OS要求 gc 编译器支持以下操作系统及架构.在开始前,请确保你的系统满足这些需求. 若你的O ...