32位CPU所含有的寄存器

  • 4个数据寄存器(EAX、EBX、ECX和EDX)
  • 2个变址和指针寄存器(ESI和EDI)
  • 2个指针寄存器(ESP和EBP)
  • 6个段寄存器(ES、CS、SS、DS、FS和GS)
  • 1个指令指针寄存器(EIP)
  • 1个标志寄存器(EFlags)

数据寄存器

  • 数据寄存器主要用来保存操作数和运算结果等信息,从而节省读取操作数所需占用总线和访问存储器的时间。
  • 32位CPU有4个32位的通用寄存器EAX、EBX、ECX和EDX。对低16位数据的存取,不会影响高16位的数据。这些低16位寄存器分别命名为:AX、BX、CX和DX,它和先前的CPU中的寄存器相一致。
  • 4个16位寄存器又可分割成8个独立的8位寄存器(AX:AH-AL、BX:BH-BL、CX:CH-CL、DX:DH-DL),每个寄存器都有自己的名称,可独立存取。程序员可利用数据寄存器的这种“可分可合”的特性,灵活地处理字/字节的信息。
  • 寄存器AX和AL通常称为累加器(Accumulator),用累加器进行的操作可能需要更少时间。累加器可用于乘、除、输入/输出等操作,它们的使用频率很高;
  • 寄存器BX称为基地址寄存器(BaseRegister)。它可作为存储器指针来使用;
  • 寄存器CX称为计数寄存器(CountRegister)。在循环和字符串操作时,要用它来控制循环次数;在位操作中,当移多位时,要用CL来指明移位的位数;
  • 寄存器DX称为数据寄存器(DataRegister)。在进行乘、除运算时,它可作为默认的操作数参与运算,也可用于存放I/O的端口地址。
  • 在16位CPU中,AX、BX、CX和DX不能作为基址和变址寄存器来存放存储单元的地址,但在32位CPU中,其32位寄存器EAX、EBX、ECX和EDX不仅可传送数据、暂存数据保存算术逻辑运算结果,而且也可作为指针寄存器,所以,这些32位寄存器更具有通用性。

变址寄存器

  • 32位CPU有2个32位通用寄存器ESI和EDI。其低16位对应先前CPU中的SI和DI,对低16位数据的存取,不影响高16位的数据。
  • 寄存器ESI、EDI、SI和DI称为变址寄存器(IndexRegister),它们主要用于存放存储单元在段内的偏移量,用它们可实现多种存储器操作数的寻址方式,为以不同的地址形式访问存储单元提供方便。
  • 变址寄存器不可分割成8位寄存器。作为通用寄存器,也可存储算术逻辑运算的操作数和运算结果。
  • 它们可作一般的存储器指针使用。在字符串操作指令的执行过程中,对它们有特定的要求,而且还具有特殊的功能。

指针寄存器

  • 32位CPU有2个32位通用寄存器EBP和ESP。其低16位对应先前CPU中的BP和SP,对低16位数据的存取,不影响高16位的数据。
  • 寄存器EBP、ESP、BP和SP称为指针寄存器(PointerRegister),主要用于存放堆栈内存储单元的偏移量,用它们可实现多种存储器操作数的寻址方式,为以不同的地址形式访问存储单元提供方便。
  • 指针寄存器不可分割成8位寄存器。作为通用寄存器,也可存储算术逻辑运算的操作数和运算结果。
  • 它们主要用于访问堆栈内的存储单元,并且规定:
    • BP为基指针(BasePointer)寄存器,用它可直接存取堆栈中的数据;
    • SP为堆栈指针(StackPointer)寄存器,用它只可访问栈顶。

段寄存器

  • 段寄存器是根据内存分段的管理模式而设置的。内存单元的物理地址由段寄存器的值和一个偏移量组合而成的,这样可用两个较少位数的值组合成一个可访问较大物理空间的内存地址。
  • CPU内部的段寄存器:
    • CS——代码段寄存器(CodeSegmentRegister),其值为代码段的段值;
    • DS——数据段寄存器(DataSegmentRegister),其值为数据段的段值;
    • ES——附加段寄存器(ExtraSegmentRegister),其值为附加数据段的段值;
    • SS——堆栈段寄存器(StackSegmentRegister),其值为堆栈段的段值;
    • FS——附加段寄存器(ExtraSegmentRegister),其值为附加数据段的段值;
    • GS——附加段寄存器(ExtraSegmentRegister),其值为附加数据段的段值。
  • 在16位CPU系统中,它只有4个段寄存器,所以,程序在任何时刻至多有4个正在使用的段可直接访问;在32位微机系统中,它有6个段寄存器,所以,在此环境下开发的程序最多可同时访问6个段。
  • 32位CPU有两个不同的工作方式:实方式和保护方式。在每种方式下,段寄存器的作用是不同的。有关规定简单描述如下:
    • 实方式:

      前4个段寄存器CS、DS、ES和SS与先前CPU中的所对应的段寄存器的含义完全一致,内存单元的逻辑地址仍为“段值:偏移量”的形式。为访问某内存段内的数据,必须使用该段寄存器和存储单元的偏移量。

    • 保护方式:

      在此方式下,情况要复杂得多,装入段寄存器的不再是段值,而是称为“选择子”(Selector)的某个值。

指令指针寄存器

  • 32位CPU把指令指针扩展到32位,并记作EIP,EIP的低16位与先前CPU中的IP作用相同。
  • 指令指针EIP、IP(InstructionPointer)是存放下次将要执行的指令在代码段的偏移量。在具有预取指令功能的系统中,下次要执行的指令通常已被预取到指令队列中,除非发生转移情况。所以,在理解它们的功能时,不考虑存在指令队列的情况。
  • 在实方式下,由于每个段的最大范围为64K,所以,EIP中的高16位肯定都为0,此时,相当于只用其低16位的IP来反映程序中指令的执行次序。

标志寄存器

运算结果标志位

进位标志CF(CarryFlag)
  • 进位标志CF主要用来反映运算是否产生进位或借位。如果运算结果的最高位产生了一个进位或借位,那么,其值为1,否则其值为0。
  • 使用该标志位的情况有:多字(字节)数的加减运算,无符号数的大小比较运算,移位操作,字(字节)之间移位,专门改变CF值的指令等。
奇偶标志PF(ParityFlag)
  • 奇偶标志PF用于反映运算结果中“1”的个数的奇偶性。如果“1”的个数为偶数,则PF的值为1,否则其值为0。
  • 利用PF可进行奇偶校验检查,或产生奇偶校验位。在数据传送过程中,为了提供传送的可靠性,如果采用奇偶校验的方法,就可使用该标志位。
辅助进位标志AF(AuxiliaryCarryFlag)

在发生下列情况时,辅助进位标志AF的值被置为1,否则其值为0:

  • 在字操作时,发生低字节向高字节进位或借位时;
  • 在字节操作时,发生低4位向高4位进位或借位时。

对以上6个运算结果标志位,在一般编程情况下,标志位CF、ZF、SF和OF的使用频率较高,而标志位PF和AF的使用频率较低。

零标志ZF(ZeroFlag)

零标志ZF用来反映运算结果是否为0。如果运算结果为0,则其值为1,否则其值为0。在判断运算结果是否为0时,可使用此标志位。

符号标志SF(SignFlag)

符号标志SF用来反映运算结果的符号位,它与运算结果的最高位相同。在微机系统中,有符号数采用补码表示法,所以,SF也就反映运算结果的正负号。运算结果为正数时,SF的值为0,否则其值为1。

溢出标志OF(OverflowFlag)

溢出标志OF用于反映有符号数加减运算所得结果是否溢出。如果运算结果超过当前运算位数所能表示的范围,则称为溢出,OF的值被置为1,否则,OF的值被清为0。

“溢出”和“进位”是两个不同含义的概念,不要混淆。如果不太清楚的话,请查阅《计算机组成原理》课程中的有关章节。

通用32位CPU 常用寄存器及其作用的更多相关文章

  1. Intel X86 32位CPU内存管理----《Linux内核源码情景分析》笔记(一)

    Intel X86 32位CPU内存管理 在X86系列中,8086和8088是16为处理器,而从80386开始为32为处理器,80286则是该系列从8088到80386,也就是16位处理器到32位处理 ...

  2. 梦回----32位CPU和64位CPU的通用寄存器

    1 32位Intel的CPU通用寄存器 32位CPU所含有的寄存器有:4个数据寄存器(EAX.EBX.ECX和EDX):2个变址和指针寄存器(ESI和EDI):2个指针寄存器(ESP和EBP):6个段 ...

  3. Microsoft(C)注册服务器(32位)CPU占用高

    Microsoft(C)注册服务器(32位)CPU占用高 摘自:https://blog.csdn.net/jtsqrj/article/details/83034252 2018年10月12日 23 ...

  4. 32位CPU和64位CPU 区别

    操作系统只是硬件和应用软件中间的一个平台. 32位操作系统针对的32位的CPU设计. 64位操作系统针对的64位的CPU设计.操作系统只是硬件和应用软件中间的一个平台. 32位操作系统针对的32位的C ...

  5. 对所有CPU寄存器的简述(16位CPU14个,32位CPU16个)

    32位CPU所含有的寄存器有:4个数据寄存器(EAX.EBX.ECX和EDX)2个变址和指针寄存器(ESI和EDI)2个指针寄存器(ESP和EBP)6个段寄存器(ES.CS.SS.DS.FS和GS)1 ...

  6. 32位Intel CPU所含有的寄存器

    4个数据寄存器(EAX.EBX.ECX和EDX)2个变址和指针寄存器(ESI和EDI) 2个指针寄存器(ESP和EBP)6个段寄存器(ES.CS.SS.DS.FS和GS)1个指令指针寄存器(EIP) ...

  7. 32位机,CPU是如何利用段寄存器寻址的

    转自:http://blog.sina.com.cn/s/blog_640531380100xa15.html 32位cpu 地址线扩展成了32位,这和数据线的宽度是一致的.因此,在32位机里其实并不 ...

  8. 计算机组成原理--64位CPU装载32位操作系统,它的寻址能力还是4GB吗?

    借由这个问题,今天我们就把 32 位 CPU.64 位 CPU.32 位操作系统.64 位操作系统之间的区别与联系彻底搞清楚.对于这个问题,博主也是一知半解了好长时间啊~ 基本概念 32位的CPU与6 ...

  9. 32位的CPU最多只能支持最大到4GBytes的内存

    和总线宽度相似的,CPU每次能够处理的数据量称为字组大小(word size), 字组大小依据CPU癿设计而有32位与64位.我们现在所称的计算机是32或64位主要是依据这个 CPU解析的字组大小而来 ...

随机推荐

  1. ActiveMq 本地安装及启动(Windows)

    首先下载MQ的安装包 http://activemq.apache.org/download.html 1.点击最新版本的ActiveMQ的 2.这里有窗户版本和Linux的的版本,这里我们选择窗口版 ...

  2. Linux下用jar命令替换war包中的文件【转】

    问题背景:在Linux环境上的weblogic发布war包,有时候只是修改了几个文件,也要上传整个war包,这样很费时间,因此整理了一下Linux环境,更新单个文件的方法. 1.如果要替换的文件直接在 ...

  3. 小D课堂 - 零基础入门SpringBoot2.X到实战_第9节 SpringBoot2.x整合Redis实战_40、Redis工具类封装讲解和实战

    笔记 4.Redis工具类封装讲解和实战     简介:高效开发方式 Redis工具类封装讲解和实战         1.常用客户端 https://redisdesktop.com/download ...

  4. Java基础 return 退出main方法的示例

        JDK :OpenJDK-11      OS :CentOS 7.6.1810      IDE :Eclipse 2019‑03 typesetting :Markdown   code ...

  5. 【DataBase】H2 DateBase的简单使用

    H2介绍 H2是一个开源的嵌入式数据库引擎,采用java语言编写,不受平台的限制,同时H2提供了一个十分方便的web控制台用于操作和管理数据库内容. H2还提供兼容模式,可以兼容一些主流的数据库,因此 ...

  6. Silence Removal and End Point Detection MATLAB Code

    转载自:http://ganeshtiwaridotcomdotnp.blogspot.com/2011/08/silence-removal-and-end-point-detection.html ...

  7. (十)进度条媒体对象和 Well 组件

    一.Well 组件 有 lg 和 sm 两种可选值 <div class="well well-lg"> Bootstrap </div> 二.进度条组件 ...

  8. 《第一本Docker书》学习笔记——第3章 Docker入门

    3.1 确保Docker已经就绪 查看docker是否正常工作: sudo docker info 3.2 运行我们的第一个容器 现在,让我们尝试启动第一个Docker容器.我们可以使用docker ...

  9. Win10下载安装PostgreSQL 11.1

    下载地址:https://get.enterprisedb.com/postgresql/postgresql-11.1-1-windows-x64.exe Installation Director ...

  10. LODOP统计table自动分页后的每页的某列合计值

    LODOP中超文本会根据打印项高度或超过纸张,自动分页.(相关博文:Lodop打印控件 超文本自动分页.LODOP中ADD_PRINT_TABLE.HTM.HTML表格自动分页测试.Lodop打印表格 ...