luogu P2221 [HAOI2012]高速公路题解
题面
很套路的拆式子然后线段树上维护区间和的题。一般都是把式子拆成区间内几个形如\(\sum i*a_i, \sum i^2 * a_i\)的式子相加减的形式。
考虑一次询问[l,r]的答案怎么算:
\]
把括号拆开,就成了:
\]
线段树上维护区间\(\sum i^2*a_i\)的和即可。
代码:
#include<bits/stdc++.h>
using namespace std;
#define N 200007
#define ll long long
struct data
{
ll s1,s2,s3;
};
data operator +(data l,data r)
{
return (data){l.s1+r.s1,l.s2+r.s2,l.s3+r.s3};
}
data operator *(data v,ll d)
{
return (data){v.s1*d,v.s2*d,v.s3*d};
}
int n;
struct Tree
{
#define lc (k<<1)
#define rc (k<<1|1)
data val[N<<2],sum[N<<2];
ll add[N<<2];
void mark(int k,ll d)
{
val[k]=val[k]+sum[k]*d;
add[k]+=d;
}
void pushdown(int k)
{
mark(lc,add[k]);
mark(rc,add[k]);
add[k]=0;
}
void build(int k,int l,int r)
{
if(l==r)
{
sum[k]={1,l,1ll*l*l};
return;
}
int mid=l+r>>1;
build(lc,l,mid),build(rc,mid+1,r);
sum[k]=sum[lc]+sum[rc];
}
void modify(int k,int l,int r,int x,int y,ll d)
{
if(l>=x&&r<=y)return mark(k,d);
int mid=l+r>>1;
pushdown(k);
if(x<=mid)modify(lc,l,mid,x,y,d);
if(y>mid)modify(rc,mid+1,r,x,y,d);
val[k]=val[lc]+val[rc];
}
data query(int k,int l,int r,int x,int y)
{
if(l>=x&&r<=y)return val[k];
int mid=l+r>>1;
data ans={0,0,0};
pushdown(k);
if(x<=mid)ans=ans+query(lc,l,mid,x,y);
if(y>mid)ans=ans+query(rc,mid+1,r,x,y);
return ans;
}
void mdy(int l,int r,ll d)
{
modify(1,1,n,l,r,d);
}
ll ask(ll l,ll r)
{
data ans=query(1,1,n,l,r);
return (l+r)*ans.s2-ans.s3-(l-1)*(r+1)*ans.s1;
}
}T;
ll gcd(ll x,ll y)
{
return y?gcd(y,x%y):x;
}
int main()
{
int m;
scanf("%d%d",&n,&m),n--;
int l,r;
ll d;
char s[10];
T.build(1,1,n);
for(int i=1;i<=m;i++)
{
scanf("%s%d%d",s,&l,&r);r--;
if(s[0]=='C')
{
scanf("%lld",&d);
T.mdy(l,r,d);
}
else
{
ll x=T.ask(l,r),len=r-l+1,y=1ll*len*(len+1)/2;
ll gd=gcd(x,y);
printf("%lld/%lld\n",x/gd,y/gd);
}
}
return 0;
}
luogu P2221 [HAOI2012]高速公路题解的更多相关文章
- 【题解】Luogu P2221 [HAOI2012]高速公路
原题传送门 这道题还算简单 我们要求的期望值: \[\frac{\sum_{i=l}^r\sum_{j=l}^rdis[i][j]}{C_{r-l+1}^{2}}\] 当然是上下两部分分别求,下面肥肠 ...
- P2221 [HAOI2012]高速公路(线段树)
P2221 [HAOI2012]高速公路 显然答案为 $\dfrac{\sum_{i=l}^r\sum_{j=l}^{r}dis[i][j]}{C_{r-l+1}^2}$ 下面倒是挺好算,组合数瞎搞 ...
- [Luogu 2221] HAOI2012 高速公路
[Luogu 2221] HAOI2012 高速公路 比较容易看出的线段树题目. 由于等概率,期望便转化为 子集元素和/子集个数. 每一段l..r中,子集元素和为: \(\sum w_{i}(i-l+ ...
- BZOJ2752:[HAOI2012]高速公路——题解
http://www.lydsy.com/JudgeOnline/problem.php?id=2752 https://www.luogu.org/problemnew/show/P2221#sub ...
- 洛谷 P2221 [HAOI2012]高速公路
链接: P2221 题意: 有 \(n(1\leq n\leq 10^5)\) 个点,从第 \(i(1\leq i< n)\) 个点向第 \(i+1\) 个点连有边.最初所有边长 \(v_i\) ...
- 洛谷P2221 [HAOI2012]高速公路
线段树 #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring> ...
- P2221 [HAOI2012]高速公路
思路 考虑每一条边的贡献,然后推式子 \[ \begin{align}&\sum_{i}V_i\times(R-i+1)\times(i-L+1)\\=&\sum_{i}V_i\lef ...
- 洛谷P2221 [HAOI2012]高速公路(线段树+概率期望)
传送门 首先,答案等于$$ans=\sum_{i=l}^r\sum_{j=i}^r\frac{sum(i,j)}{C_{r-l+1}^2}$$ 也就是说所有情况的和除以总的情况数 因为这是一条链,我们 ...
- BZOJ2752: [HAOI2012]高速公路(road)
2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 608 Solved: 199[Submit][ ...
随机推荐
- (二十二)golang--时间和日期相关函数
时间的常量,可以获得指定时间单位 Unix和UnixNano 小例子:统计函数运行的时间:
- npm install说明
一.常用简写 npm install=npm i.在git clone项目的时候,项目文件中并没有 node_modules文件夹,项目的依赖文件可能很大.直接执行,npm会根据package.jso ...
- Go gRPC Hello World
概述 开始 gRPC 了,这篇文章学习使用 gRPC,输出一个 Hello World. 用 Go 实现 gRPC 的服务端. 用 Go 实现 gRPC 的客户端. gRPC 支持 4 类服务方法,咱 ...
- Express 框架以及与http-proxy-middleware整合实现代理
1.Express的简单使用 1.简介 Express 是一个简洁而灵活的 node.js Web应用框架, 提供了一系列强大特性帮助你创建各种 Web 应用,和丰富的 HTTP 工具. 使用 Exp ...
- Linux iSCSI 磁盘共享管理
Linux iSCSI 磁盘共享管理 iSCSI 服务是通过服务端(target)与客户端(initiator)的形式来提供服务.iSCSI 服务端用于存放存储源的服务器,将磁盘空间共享给客户使用,客 ...
- ExcelHelper based on NPOI
//Export data to excel via NPOI public static void ExportDataTableToExcel(DataTable dataTable, strin ...
- Spring Boot MVC 使用 JSP 作为模板
Spring Boot 默认使用 Thymeleaf 作为模板引擎,直接在 template 目录中存放 JSP 文件并不能正常访问,需要在 main 目录下新建一个文件夹来存放 JSP 文件,而且需 ...
- PHP 类/对象函数
PHP类/对象函数是PHP核心的一部分,无需要安装就可以使用. 函数名称 描述 __autoload 尝试加载未定义的类 class_alias 为一个类创建别名 class_exists 检查类是否 ...
- Qt发送邮件
首先下载支持库 https://download.csdn.net/download/zhangxuechao_/10598108 #ifndef MAIL_H #define MAIL_H #inc ...
- 白话SCRUM 之二:product backlog
在SCRUM方法中明确要求了3个文档: 1 product backlog 2sprint backlog 3 burn-down chart Product backlog 中列举了本项目应该实现的 ...