题意

所求即为:

\(\sum\limits_{i_1=L}^{R}\sum\limits_{i_2=L}^{R}...\sum\limits_{i_k=L}^{R}[\gcd(i_1,i_2,...,i_k)=k]\)

套路地进行莫比乌斯反演:

\(\sum\limits_{i_1=\frac{L-1}{k}+1}^{\frac{R}{k}}\sum\limits_{i_2=\frac{L-1}{k}+1}^{\frac{R}{k}}...\sum\limits_{i_k=\frac{L-1}{k}+1}^{\frac{R}{k}}[\gcd(i_1,i_2,...,i_k)=1]\)

\(\sum\limits_{i_1=\frac{L-1}{k}+1}^{\frac{R}{k}}\sum\limits_{i_2=\frac{L-1}{k}+1}^{\frac{R}{k}}...\sum\limits_{i_k=\frac{L-1}{k}+1}^{\frac{R}{k}}\sum\limits_{x|\gcd(i_1,i_2,...,i_k)}\mu(x)\)

\(\sum\limits_{x=1}^{\frac{R}{k}}\mu(x)\sum\limits_{i_1=\frac{L-1}{k}+1}^{\frac{R}{k}}\sum\limits_{i_2=\frac{L-1}{k}+1}^{\frac{R}{k}}...\sum\limits_{i_k=\frac{L-1}{k}+1}^{\frac{R}{k}}[x|\gcd(i_1,i_2,...,i_k)]\)

\(\sum\limits_{x=1}^{\frac{R}{k}}\mu(x)\sum\limits_{i_1=\frac{L-1}{k*x}+1}^{\frac{R}{k*x}}\sum\limits_{i_2=\frac{L-1}{k*x}+1}^{\frac{R}{k*x}}...\sum\limits_{i_k=\frac{L-1}{k*x}+1}^{\frac{R}{k*x}}1\)

\(\sum\limits_{x=1}^{\frac{R}{k}}\mu(x)(\frac{R}{k*x}-\frac{L-1}{k*x})^n\)

杜教筛求\(\sum\limits_{x=1}^{\frac{R}{k}}\mu(x)\)就可以除法分块了

code:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=1e5+10;
const int inf=1e9;
const ll mod=1000000007;
int n,K,L,R;
int mu[maxn],sum[maxn];
ll ans;
bool vis[maxn];
vector<int>prime;
unordered_map<int,int>mp;
inline ll power(ll x,ll k,ll mod)
{
ll res=1;
while(k)
{
if(k&1)res=res*x%mod;
x=x*x%mod;k>>=1;
}
return res;
}
inline void pre_work(int n)
{
vis[1]=1;mu[1]=1;
for(int i=2;i<=n;i++)
{
if(!vis[i])prime.push_back(i),mu[i]=-1;
for(unsigned int j=0;j<prime.size()&&i*prime[j]<=n;j++)
{
vis[i*prime[j]]=1;
if(i%prime[j]==0)break;
mu[i*prime[j]]=-mu[i];
}
}
for(int i=1;i<=n;i++)sum[i]=sum[i-1]+mu[i];
}
inline int getsum(int x)
{
if(x<=100000)return sum[x];
if(mp.count(x))return mp[x];
ll res=1;
for(int l=2,r;l<=x;l=r+1)
{
r=x/(x/l);
res=(res-(r-l+1)*getsum(x/l)%mod)%mod;
}
return mp[x]=(res%mod+mod)%mod;
}
int main()
{
pre_work(100000);
scanf("%d%d%d%d",&n,&K,&L,&R);
L=(L-1)/K,R=R/K;
for(int l=1,r;l<=R;l=r+1)
{
r=min(L/l?L/(L/l):inf,R/(R/l));
ans=((ans+1ll*(getsum(r)-getsum(l-1))*power(R/l-L/l,n,mod)%mod)%mod+mod)%mod;
}
printf("%lld",ans);
return 0;
}

luoguP3172 [CQOI2015]选数的更多相关文章

  1. [luoguP3172] [CQOI2015]选数(递推+容斥原理)

    传送门 不会莫比乌斯反演,不会递推. 但是我会看题解. 先将区间[L,H]变成(L-1,H],这样方便处理 然后求这个区间内gcd为k的方案数 就是求区间((L-1)/k,H/k]中gcd为1的方案数 ...

  2. BZOJ 3930: [CQOI2015]选数 递推

    3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...

  3. bzoj3930[CQOI2015]选数 容斥原理

    3930: [CQOI2015]选数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1383  Solved: 669[Submit][Status] ...

  4. 洛谷 [CQOI2015]选数 解题报告

    [CQOI2015]选数 题目描述 我们知道,从区间\([L,H]\)(\(L\)和\(H\)为整数)中选取\(N\)个整数,总共有\((H-L+1)^N\)种方案. 小\(z\)很好奇这样选出的数的 ...

  5. 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演

    [BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...

  6. [CQOI2015]选数(莫比乌斯反演,杜教筛)

    [CQOI2015]选数(luogu) Description 题目描述 我们知道,从区间 [L,H](L 和 H 为整数)中选取 N 个整数,总共有 (H-L+1)^N 种方案. 小 z 很好奇这样 ...

  7. BZOJ3930: [CQOI2015]选数

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=3930 容斥原理. 令l=(L-1)/k,r=R/k,这样找k的倍数就相当于找1的倍数. 设F[ ...

  8. 【刷题】BZOJ 3930 [CQOI2015]选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  9. 【BZOJ】3930: [CQOI2015]选数

    题意 从区间\([L, R]\)选\(N\)个数(可以重复),问这\(N\)个数的最大公约数是\(K\)的方案数.(\(1 \le N, K \le 10^9, 1 \le L \le R \le 1 ...

随机推荐

  1. VS2017项目升级 error LNK2005: "public: __thiscall ATL::CTime::

    我是将项目升级到从VS2012 升级VS2017, 报错如下 1>atlsd.lib(atltime.obj) : error LNK2005: "public: __thiscall ...

  2. C++ 实现 查找进程, 杀死进程, 启动进程, 进程重启

    头文件: #include <Windows.h>#include <tlhelp32.h>#include <tchar.h>#include <Shell ...

  3. jvm 性能调优工具之 jmap

    概述 命令jmap是一个多功能的命令.它可以生成 java 程序的 dump 文件, 也可以查看堆内对象示例的统计信息.查看 ClassLoader 的信息以及 finalizer 队列. jmap ...

  4. VBA基础 - 分支和循环

    概要 编程语言的基础除了数据类型, 就是控制结构了. 所谓控制结构, 主要就是分支和循环. 分支 废话不说, 直接示例代码: 单条件判断 1 Sub Test() 2 If 2 > 1 Then ...

  5. 微信小程序开发语音识别文字教程

    微信小程序开发语音识别文字教程 现在后台 添加插件 微信同声传译 然后app.json 加入插件 "plugins": { "WechatSI": { &quo ...

  6. Algorithm: CRT、EX-CRT & Lucas、Ex-Lucas

    中国剩余定理 中国剩余定理,Chinese Remainder Theorem,又称孙子定理,给出了一元线性同余方程组的有解判定条件,并用构造法给出了通解的具体形式. \[ \begin{aligne ...

  7. [线段树]区间修改&区间查询问题

    区间修改&区间查询问题 [引言]信息学奥赛中常见有区间操作问题,这种类型的题目一般数据规模极大,无法用简单的模拟通过,因此本篇论文将讨论关于可以实现区间修改和区间查询的一部分算法的优越与否. ...

  8. yii2.0的学习之旅(一)

    一. 通过composer安装yii2.0项目 *本文是根据您已经安装了composer (1)跳转到项目根目录 cd /xxxx/www (2)下载插件 composer global requir ...

  9. Python简单的get和post请求

    1.json 模块提供了一种很简单的方式来编码和解码JSON数据. 其中两个主要的函数是 json.dumps() 和 json.loads() , 要比其他序列化函数库如pickle的接口少得多. ...

  10. 面试阿里百分百问的Jvm,别问有没有必要学,真的很有必要朋友

    面试阿里百分百问的Jvm,别问有没有必要学,真的很有必要朋友 前言: JVM 的内存模型和 JVM 的垃圾回收机制一直是 Java 业内从业者绕不开的话题(实际调优.面试)JVM是java中很重要的一 ...