P3197 [HNOI2008]越狱

题目描述

监狱有连续编号为 \(1…N\) 的 \(N\) 个房间,每个房间关押一个犯人,有 \(M\) 种宗教,每个犯人可能信仰其中一种。如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱。

输入格式

输入两个整数 \(M,N\)

输出格式

可能越狱的状态数,模 \(100003\) 取余

输入输出样例

输入 #1

2 3

输出 #1

6

说明/提示

6种状态为(000)(001)(011)(100)(110)(111)

\(1 \le M \le 10^8\)

\(1 \le N \le 10^{12}\)

【思路】

组合数学 + 快速幂

【题目大意】

n个房间里面都有犯人,他们信仰m种不同的宗教

求有至少一对信仰相同宗教的人挨在一起的情况

【核心思路】

正着求是很难求或者是没有办法求的

所以正难则反

没法直接求出来越狱的情况

那就求出总的情况和不越狱的情况

用总的情况减去不越狱的情况

就是题目要求我们求的越狱的情况

总的情况

每一个房间都有m中可能,一共有n个房间

所以可能性是m^n次方

总的情况就知道了

然后看不会越狱的情况

第一个房间可以有m中选择

第二个房间不能和第一个房间的宗教一样‘

所以只有m-1中可能

第三个也是和第二个一样

所以出现了一个m和n-1个m-1

那么不会越狱的情况就是m*(m-1)^(n-1)

知道了这两个

一做差就可以求出来会越狱的情况了

【小细节】

幂运算很大需要用快速幂

【完整代码】

#include<iostream>
#include<cstdio>
#define int long long
using namespace std;
const int mo = 100003; int p(int a,int b)
{
int ans = 1;
while(b != 0)
{
if(b & 1 == 1)
{
ans *= a;
ans %= mo;
}
b /= 2;
a = ((a % mo) * (a % mo)) % mo;
}
return ans;
} signed main()
{
int n,m;
cin >> m >> n;
cout << ((p(m,n) % mo - (m * p(m - 1,n - 1)))%mo + mo ) % mo;//先做减法,因为减法之后可能出现负数,但是这个负数的绝对值一定会小于m的 ,因为这是两个已经%过m的数,保证小于m所以做的差的绝对值也一定小于m,只需要将这个可能是服饰的数加上mo保证是正数之后再%一遍mo
return 0;
}

洛谷 P3197 [HNOI2008]越狱 题解的更多相关文章

  1. 洛谷 P3197 [HNOI2008]越狱 解题报告

    P3197 [HNOI2008]越狱 题目描述 监狱有连续编号为\(1-N\)的\(N\)个房间,每个房间关押一个犯人,有\(M\)种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可 ...

  2. 洛谷P3197 HNOI2008 越狱

    题目传送门 实际上昨天大鸡哥已经讲过这题了,结果没记住,今天一道相似的题就挂了......吃一堑长一智啊. 思路大致是这样:如果直接算发生越狱的情况会比较复杂,所以可以用间接法,用安排的总方案-不会发 ...

  3. 【洛谷P3197】越狱

    本来还想了一会dp-- 然而一看数据范围明显是数论-- 那么推一推.. 我们发现可以用总方案数减去不会越狱的方案数 那么我们考虑在长度为n的数列中填数 首先第一个位置有m种选择,后面的位置: 总方案: ...

  4. 洛谷3197&bzoj1008 越狱

    洛谷3197&bzoj1008 越狱 Luogu bzoj 题解 所有状态减合法状态.SBT 答案为\(m^n-m*(m-1)^{n-1}\)太SB不解释 注意取膜的问题.相减可能减出负数,而 ...

  5. 洛谷P2832 行路难 分析+题解代码【玄学最短路】

    洛谷P2832 行路难 分析+题解代码[玄学最短路] 题目背景: 小X来到了山区,领略山林之乐.在他乐以忘忧之时,他突然发现,开学迫在眉睫 题目描述: 山区有n座山.山之间有m条羊肠小道,每条连接两座 ...

  6. 【洛谷P3960】列队题解

    [洛谷P3960]列队题解 题目链接 题意: Sylvia 是一个热爱学习的女孩子. 前段时间,Sylvia 参加了学校的军训.众所周知,军训的时候需要站方阵. Sylvia 所在的方阵中有 n×m ...

  7. bzoj1008 / P3197 [HNOI2008]越狱

    P3197 [HNOI2008]越狱 考虑所有状况:显然是$m^{n}$ 考虑所有不合法状况: 显然相邻两个数不相等 那么后面$n-1$个数就有$(m-1)^{n-1}$种取法 第一个数前面没有相邻的 ...

  8. 洛谷P2312 解方程题解

    洛谷P2312 解方程题解 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) ...

  9. 洛谷P1577 切绳子题解

    洛谷P1577 切绳子题解 题目描述 有N条绳子,它们的长度分别为Li.如果从它们中切割出K条长度相同的 绳子,这K条绳子每条最长能有多长?答案保留到小数点后2位(直接舍掉2为后的小数). 输入输出格 ...

随机推荐

  1. H5页面跳转与传值

    页面之间的跳转经常使用a标签,使用mvc框架的都是通过访问controller的请求方法,返回请求页面.但本次开发,前端与后台完全分离,前端APP使用HBuider来开发,后台数据就无法使用mvc框架 ...

  2. python入门基础 02

    目录 1.while 2.字符串格式化 3.运算符 4.编码初始 总结 1.while # while -- 关键字 (死循环) # # if 条件: # 结果 # # while 条件: # 循环体 ...

  3. 关于 Safari 浏览器不支持 location [ window.location.href window.open()] 跳转问题的解决方案

    最近在做项目时,碰到 safari 浏览器不支持location跳转问题,针对此问题,可以通过 js 模拟点击时间来解决,代码如下: <!DOCTYPE HTML> <html la ...

  4. vue-cli 移动端项目如何在手机上调试预览

    这里分享下如何在webpack工具构建下的vue项目,在手机端调试和预览,言归正传. 1.电脑和手机连接到同一个WIFI a.台式电脑和手机同时链接一个路由器,使用同一个wifi: b.笔记本也可以直 ...

  5. django 上传头像并预览 3选1

    注册页面的头像上传 register.html<!DOCTYPE html> <html lang="en"> <head> <meta ...

  6. pgrep,pkill

    pgrep, pkill - look up or signal processes based on name and other attributes 根据名称和其它属性来查找进程 pgrep: ...

  7. 2020秋招嵌入式面经——地平线、小米、CVTE、大华、绿米

    地平线提前批 一面凉: 投递简历过程:官网投递9月份之前投的都是提前批,投了北京.上海.南京地区的嵌入式软件研发岗,北京和上海的都被筛掉了,南京的捞了我,hr小姐姐打电话邀约面试. 一面凉: 电话面试 ...

  8. MySQL/MariaDB数据库的触发器

    MySQL/MariaDB数据库的触发器 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.触发器概述 1>.什么是触发器 触发器的执行不是由程序调用,也不是由手工启动,而是 ...

  9. 使用Cloudera Manager添加Sentry服务

    使用Cloudera Manager添加Sentry服务 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.通过CM添加Sentry服务 1>.点击添加服务进入CM服务安装向 ...

  10. 基于kubeamd初始化安装kubernetes集群

    环境:master,etcd 172.16.1.5node1 172.16.1.6node2 172.16.1.7前提:1.基于主机名通信,/etc/hosts 2.时间同步3.关闭firewalld ...