Kafka 中有这样一个概念消费者组,所有我们去订阅 topic 和 topic 交互的一些操作我们都是通过消费者组去交互的。

在 consumer 端设置了消费者的名字之后,该客户端可以对多个 topic 进行订阅。我们也可以通过 group-id 来识别是谁在消费消息,或者在消费哪些组的消息。

发挥 consumer 最大的效果就是和 broker 的 topic 下的 partitions 数相等。

做到一个 parititons 分配一个独立的 consumer 去消费能达到最高效果,比如我们给一个 topic 分配 20 个 partitions 高峰期间最好我们就有 20个 consumer 在消费它们。你说我们要是分配 25个可以吗?也可以,但是会有 5个 consumer 在空闲。

这里还有一个需要注意的地方,如果我们使用消费者组订阅了多个 topic ,那么我们消费者组需要的消费者数量是所有 topic partitions 之合才能达到满载效果这个需要特别注意。

老版本的 consumer 把 offset 存储在 zk 上,但是后来发现在大规模部署的生产环境中,这样做会让 zk 随着 kafka 集群规模的增长而线性增长。所以后面新版本的 consumer 是把 offset 存储在 自己集群的 topic 的 __consumer_offsets 位移主题中。

下面我们来详细聊下新版 offset 存储以及 __consumer_offsets 的用途。新版本的位移管理机制就是将位移数据一条条提交到 __consumer_offsets 中。

常规位移消息的格式包含三部分<group_id, topic_name, partition_no> 用于说明自己是来自哪个消费组,消费 topic 名称和所消费的 partition 号。

另外还有两种消息:

1. 用于注册新的 consumer group 的消息。

2. 用于删除过期 group 位移或者删除 group 的消息。一旦某个 consumer group 下的所有 consumer 实例都停止了,而且它们的位移数据都已经被删除的时候, kafka 会向位移主题的对应分区写入 tombstone 消息,墓碑消息表明要彻底删除这个 group 的信息。

默认情况下 kafka __consumer_offsets 会在第一个 consumer 创建的时候自动创建,默认是 50 个 partitions 。

consumer 端有参数来控制是否自动提交位移,并且多久提交一次位移:

enable.auto.commit = True # 默认为 True
auto.commit.interval.ms = # 默认 5s python 多线程会为其提交一次位移

位移的数据会提交得越来越多,就需要整理。

Kafka 使用 Compact 来整理过期的消息。Compact 策略会用于来删除位移主题中的过期消息,避免消息的无限膨胀。

这里有一张来自官网的图片来描述 compact 算法究竟在做什么

上面我们说了 key 是大概是由 <group_id, topic_name, partition_no> 谁在哪个主题哪个分区 的消费位置,那么这个消费位置会一直更新,因为我们一直在消费,所以属于这个 group_id 的每个 partitions 的消息位置会一直变化。也就是 value 会一直被更新那么 compact 算法就能基于相同的 key 对前面老旧的消息进行清理。想了解其详细算法可以参考 reference 对 log compaction 的源码解析。

Kafka 提供专门的后台线程定期巡检待 Compact 的主题,我们可以通过查看 kafka 日志 log-cleaner.log 获得一些信息

[-- ::,] INFO Cleaner : Beginning cleaning of log __consumer_offsets-. (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Building offset map for __consumer_offsets-... (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Building offset map for log __consumer_offsets- for segments in offset range [, ). (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Offset map for log __consumer_offsets- complete. (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Cleaning log __consumer_offsets- (cleaning prior to Mon Jul :: CST , discarding tombstones prior to Sat Jul :: CST )... (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Cleaning segment in log __consumer_offsets- (largest timestamp Fri May :: CST ) into , retaining deletes. (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Cleaning segment in log __consumer_offsets- (largest timestamp Sun Jul :: CST ) into , retaining deletes. (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Swapping in cleaned segment for segment(s) , in log __consumer_offsets-. (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Cleaning segment in log __consumer_offsets- (largest timestamp Mon Jul :: CST ) into , retaining deletes. (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Swapping in cleaned segment for segment(s) in log __consumer_offsets-. (kafka.log.LogCleaner)
[-- ::,] INFO [kafka-log-cleaner-thread-]:
Log cleaner thread cleaned log __consumer_offsets- (dirty section = [, ])
100.0 MB of log processed in 3.4 seconds (29.3 MB/sec).
Indexed 100.0 MB in 2.8 seconds (35.4 Mb/sec, 82.8% of total time)
Buffer utilization: 0.0%
Cleaned 100.0 MB in 0.6 seconds (170.4 Mb/sec, 17.2% of total time)
Start size: 100.0 MB (,, messages)
End size: 0.0 MB ( messages)
100.0% size reduction (100.0% fewer messages)
(kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Beginning cleaning of log __consumer_offsets-. (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Building offset map for __consumer_offsets-... (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Building offset map for log __consumer_offsets- for segments in offset range [, ). (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Offset map for log __consumer_offsets- complete. (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Cleaning log __consumer_offsets- (cleaning prior to Mon Jul :: CST , discarding tombstones prior to Sun Jul :: CST )... (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Cleaning segment in log __consumer_offsets- (largest timestamp Mon Jul :: CST ) into , retaining deletes. (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Cleaning segment in log __consumer_offsets- (largest timestamp Mon Jul :: CST ) into , retaining deletes. (kafka.log.LogCleaner)
[-- ::,] INFO Cleaner : Swapping in cleaned segment for segment(s) , in log __consumer_offsets-. (kafka.log.LogCleaner)
[-- ::,] INFO [kafka-log-cleaner-thread-]:
Log cleaner thread cleaned log __consumer_offsets- (dirty section = [, ])
1.8 MB of log processed in 0.2 seconds (11.5 MB/sec).
Indexed 1.8 MB in 0.1 seconds (13.3 Mb/sec, 86.5% of total time)
Buffer utilization: 0.0%
Cleaned 1.8 MB in 0.0 seconds (84.8 Mb/sec, 13.5% of total time)
Start size: 1.8 MB (, messages)
End size: 0.0 MB ( messages)
99.9% size reduction (99.8% fewer messages)
(kafka.log.LogCleaner)

下一篇会来重点谈一谈 rebalance 的问题,和手动提交 offset python 版本的实操。

Reference:

https://time.geekbang.org/column/article/105112 geektime 专栏 kafka 核心技术与实战-15 消费者组到底是什么

https://time.geekbang.org/column/article/105473 geektime 专栏 kafka 核心技术与实战-16 揭开神秘的“位移主题”面纱

https://time.geekbang.org/column/article/105473 geektime 专栏 kafka 核心技术与实战-17 消费者组重平衡能避免吗

https://github.com/dpkp/kafka-python/issues/948  KIP-62 / KAFKA-3888: Allow consumer to send heartbeats from a background thread

https://github.com/dpkp/kafka-python/pull/1266/files  KAFKA-3888 Use background thread to process consumer heartbeats

https://segmentfault.com/a/1190000007922290  Kafka Log Compaction 解析

Kafka 消费者到底是什么 以及消费者位移主题到底是什么(Python 客户端 1.01 broker)的更多相关文章

  1. 我们使用 Kafka 生产者在发消息的时候我们关注什么(Python 客户端 1.01 broker)

    之前使用 Kafka 的客户端消费者比较多一点,而且也是无脑订阅使用也没有深入了解过具体的参数.总的来说使用不够细节. 这次公司项目活动期间暴露非常多的问题,于是有了这篇文章. 首先我们来拆解一下 K ...

  2. kafka Poll轮询机制与消费者组的重平衡分区策略剖析

    注意本文采用最新版本进行Kafka的内核原理剖析,新版本每一个Consumer通过独立的线程,来管理多个Socket连接,即同时与多个broker通信实现消息的并行读取.这就是新版的技术革新.类似于L ...

  3. kafka 消费组功能验证以及消费者数据重复数据丢失问题说明 3

    原创声明:作者:Arnold.zhao 博客园地址:https://www.cnblogs.com/zh94 背景 上一篇文章记录了kafka的副本机制和容错功能的说明,本篇则主要在上一篇文章的基础上 ...

  4. Hadoop生态圈-Kafka的新API实现生产者-消费者

         Hadoop生态圈-Kafka的新API实现生产者-消费者 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.

  5. Hadoop生态圈-Kafka的旧API实现生产者-消费者

    Hadoop生态圈-Kafka的旧API实现生产者-消费者 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.旧API实现生产者-消费者 1>.开启kafka集群 [yinz ...

  6. 深入了解Kafka【五】Partition和消费者的关系

    1.消费者与Partition 以下来自<kafak权威指南>第4章. 假设主题T1有四个分区. 1.1.一个消费者组 1.1.1.消费者数量小于分区数量 只有一个消费者时,消费者1将收到 ...

  7. Kafka 幂等生产者和事务生产者特性(讨论基于 kafka-python | confluent-kafka 客户端)

    Kafka 提供了一个消息交付可靠性保障以及精确处理一次语义的实现.通常来说消息队列都提供多种消息语义保证 最多一次 (at most once): 消息可能会丢失,但绝不会被重复发送. 至少一次 ( ...

  8. 053 kafka自带的生产者与消费者测试

    1.命令 2.启动生产者 bin/kafka-console-producer.sh --topic beifeng --broker-list linux-hadoop01.ibeifeng.com ...

  9. Kafka之--python-kafka测试kafka集群的生产者与消费者

    前面两篇博客已经完成了Kafka的搭建,今天再来点稍高难度的帖子. 测试一下kafka的消息消费行为.虽然,kafka有测试的shell脚本可以直接测试,但既然我最近在玩python,那还是用pyth ...

随机推荐

  1. 在Centos7中创建.net core 项目,并用Apache做代理服务器部署.net core项目

    这一篇实例记录一次用Centos7创建并部署.net core项目的过程,希望能帮到用到的小伙伴. Kestrel 是 ASP.NET Core 项目模板中包括的默认 Web 服务器,Kestrel可 ...

  2. JavaScript原型链以及Object,Function之间的关系

    JavaScript里任何东西都是对象,任何一个对象内部都有另一个对象叫__proto__,即原型,它可以包含任何东西让对象继承.当然__proto__本身也是一个对象,它自己也有自己的__proto ...

  3. Android存储及getCacheDir()、getFilesDir()、getExternalFilesDir()、getExternalCacheDir()区别

    存储介绍 Android系统分为内部存储和外部存储,内部存储是手机系统自带的存储,一般空间都比较小,外部存储一般是SD卡的存储,空间一般都比较大,但不一定可用或者剩余空间可能不足.一般我们存储内容都会 ...

  4. RTSP协议介绍 (转)

    1. 实 时流协议RTSP RTSP[3]协 议以客户服务器方式工作,它是一个多媒体播放控制协议,用来使用户在播放从因特网下载的实时数据时能够进行控制,如:暂停/继 续.后退.前进等.因此 RTSP ...

  5. windows安装redis服务

    下载地址: https://github.com/microsoftarchive/redis/releases 解压. git执行:

  6. 总结一下NDK crash排查步骤

    总结一下NDK crash排查步骤: 先在PC上跑通算法 用Visual Studio写算法的testbed,确保算法能跑通 抓log adb logcat -c; adb logcat > 1 ...

  7. 19,flask消息闪现-flash

    Flash消息 请求完成后给用户的提醒消息,flask的核心特性, flash函数实现效果 视图函数中调用flash()方法 html中要使用get_flashed_messages() 后端代码: ...

  8. configure生成makefile的配置项说明

    一般Linux软件使用configure来检测系统生成makefile文件之后可使用make来编译安装软件. configure的配置选项有哪些呢?现简单收集如下,不断更新中. 以gcc -v为例,可 ...

  9. Linux-存储服务之NFS

    NFS介绍 官方文档 NFS(Network File System)即网络文件系统,它最大的功能就是通过TCP/IP网络共享资源.在NFS的应用中,本地NFS的客户端应用可以透明地读写位于远端NFS ...

  10. requireJS的基本使用

    requireJS的基本使用 一.总结 一句话总结: requireJS是js端模块化开发,主要是实现js的异步加载,和管理模块之间的依赖关系,便于代码的编写和维护 1.页面加载的js文件过多的缺点是 ...