Multi-Agent Reinforcement Learning Based Frame Sampling for Effective Untrimmed Video Recognition

ICCV 2019 (oral)

2019-08-01 15:08:19

Paperhttps://arxiv.org/abs/1907.13369

1. Backgroud and Motivation:

本文提出一种基于多智能体强化学习的未裁剪视频识别模型,来自适应的从未裁剪视频中,截取出样本视频帧进行行为识别。具体的示意图如下所示:

2. Architecture 

2.1 Context-aware Observation Network:

这个 context-aware observation network 是一个基础的观测网络,随后是 context network。这个基础的观测网络是用于编码 选中的视频帧的视频信息,输出为 feature vector,作为 context network 的输入。与 single-agent 系统不同的是,multi-agent 的系统,每一个智能体的选择不仅依赖于 local environment state,而且受到 context information 的影响。所以,我们设计了一个 context-aware module,来维持一个  joint internal state of agents,用一个 RNN 网络将 history context information 进行总结。为了能够使之更加有效的工作,每一个智能体 only accesses context information from its 2M neighboring agents but not from all agents. 正式的来说,所有的时间步骤 t,智能体 a 观测到一个组合的状态 $s_t^a$ 及其 之前的 hidden state $h_{t-1}^a$ 作为 context module 的输入,然后产生其当前的 hidden states:

2.2 Policy Network

作者采用 fc + softmax function 作为 policy network。在每一个时间步骤 t,每一个智能体 a,根据策略网络产生的概率分布, 选择一个动作 $u_t^a$ 来执行。动作集合是一个离散的空间 {moving ahead, moving back and staying}。并且设置一定的步幅。当所有的智能体都选择 staying 的时候,意味着该停止了。

2.3 Classification Network

就是将选中的视频帧进行 action 的分类。

3. Objectives 

本文将同时进行 奖励最大化的优化 以及 分类网络的优化。

3.1 MARL Objective

Reward function: 奖励函数反应了 agents 选择动作的好坏。当所有的智能体都选择动作时,每一个时刻 t,每一个智能体基于分类的概率 $p_t^a$ 得到了其各自的奖励 $r_t^a$ 。给予 agent 奖励可以促使其知道更加具有信息量的 frame,从而一步一步的改善正确预测的概率。所以,作者设计了一个简单的奖励函数,鼓励模型增加其 confidence。特定的,对于第 t 个时间步骤来说,agent a 接收的奖励按照如下的方式进行计算:

其中,$p_{t,c}^a$ 代表了智能体 a 在时刻 t 模型将其预测为 class c 的概率,gt 是视频的 ground truth label。所有的智能体共享同一个 reward function。考虑到序列决策的场景,考虑累积折扣回报是更加合适的,即:将来的奖励对当前的步骤贡献更小一些。特别的,在时刻 t,对于智能体 a 来说,折扣的回报可以计算如下:

Policy Gradient: 服从 REINFORCE 算法,作者将目标函数设置为:

在本文的情况下,学习网络参数使其可以最大化上述公式,其梯度为:

这变成了一个 non-trivial optimization problem, 由于 action sequence space 的维度过高。REINFORCE 通过蒙特卡洛采样的方式,进行梯度的估计:

然后,我们可以利用随机梯度下降的方式,来最小化下面的损失:

Maximum entropy:

为了避免让策略迅速变的 deterministic,研究者考虑将 entropy regularization 技术引入到 DRL 算法中,以鼓励探索。更大的熵,agent 就会更加偏向于探索其他动作。所以,我们利用 policy 的 entropy 来进行正则:

所以,MARL 总得损失是上述两个损失函数的加和:

3.2 Classification Objective :

作者用 Cross-entropy loss 来最小化 gt 和 prediction p 之间的 KL-散度:

最终,我们优化组合损失,即:

4. Experiments

==

Multi-Agent Reinforcement Learning Based Frame Sampling for Effective Untrimmed Video Recognition的更多相关文章

  1. [转]Deep Reinforcement Learning Based Trading Application at JP Morgan Chase

    Deep Reinforcement Learning Based Trading Application at JP Morgan Chase https://medium.com/@ranko.m ...

  2. [转]Introduction to Learning to Trade with Reinforcement Learning

    Introduction to Learning to Trade with Reinforcement Learning http://www.wildml.com/2018/02/introduc ...

  3. Introduction to Learning to Trade with Reinforcement Learning

    http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/ The academic ...

  4. 【资料总结】| Deep Reinforcement Learning 深度强化学习

    在机器学习中,我们经常会分类为有监督学习和无监督学习,但是尝尝会忽略一个重要的分支,强化学习.有监督学习和无监督学习非常好去区分,学习的目标,有无标签等都是区分标准.如果说监督学习的目标是预测,那么强 ...

  5. (转) Deep Reinforcement Learning: Pong from Pixels

    Andrej Karpathy blog About Hacker's guide to Neural Networks Deep Reinforcement Learning: Pong from ...

  6. (转) Playing FPS games with deep reinforcement learning

    Playing FPS games with deep reinforcement learning 博文转自:https://blog.acolyer.org/2016/11/23/playing- ...

  7. (转) Deep Learning Research Review Week 2: Reinforcement Learning

      Deep Learning Research Review Week 2: Reinforcement Learning 转载自: https://adeshpande3.github.io/ad ...

  8. 论文笔记:Learning how to Active Learn: A Deep Reinforcement Learning Approach

    Learning how to Active Learn: A Deep Reinforcement Learning Approach 2018-03-11 12:56:04 1. Introduc ...

  9. (zhuan) Evolution Strategies as a Scalable Alternative to Reinforcement Learning

    Evolution Strategies as a Scalable Alternative to Reinforcement Learning this blog from: https://blo ...

随机推荐

  1. k8s基础操作命令

    K8s重新加入节点 1.重置node节点环境在slave节点上执行 [root@node2 ~]# kubeadm reset [reset] WARNING: changes made to thi ...

  2. unity shader入门(一):基本结构话痨版

    unity shader 有三种形式:表面着色器(Surface Shader),顶点/片元着色器(Vertex/Fragment Shader),固定函数着色器(Fixed Function Sha ...

  3. java系统化基础-day01-基础语法知识

    1.学前必看 该课程将系统化的讲解java基础,但是该课程并不适合零基础的学员,因为在整个java学习体系中我们是按照实际生产设计, 主体思路是以完成某个业务为主线,用到什么技术就学什么技术,即带着问 ...

  4. ZMQ应用

    一.  ZeroMQ概述 ZeroMQ是一种基于消息队列的多线程网络库,其对套接字类型.连接处理.帧.甚至路由的底层细节进行抽象,提供跨越多种传输协议的套接字.ZeroMQ是网络通信中新的一层,介于应 ...

  5. ElasticSearch(十二):Spring Data ElasticSearch 的使用(二)

    在前一篇博文中,创建了Spring Data Elasticsearch工程,并且进行了简单的测试,此处对Spring Data Elasticsearch进行增删改查的操作. 1.增加 在之前工程的 ...

  6. LFS7.10——构建LFS系统

    参考:LFS7.10——准备Host系统 LFS7.10——构造临时Linux系统 本文正式开始构建LFS系统,后面所有命令的执行都是在root用户下完成的. 这时开始构建LFS前准备工作 更改$LF ...

  7. PHP中的分支及循环语句

    这次实践的都是PHP7的语法. 感觉是以前的5差别不是那么大,只是希望越来越快吧. <?php $looking = isset($_GET['title']) || isset($_GET[' ...

  8. python中的glob模块的使用

    最近常常用到glob模块,这里做一个简单小结: 用它可以查找符合特定规则的文件路径名.跟使用windows下的文件搜索差不多.查找文件只用到三个匹配符:”*”, “?”, “[]”.”*”匹配0个或多 ...

  9. Spark Partition

    分区的意义 Spark RDD 是一种分布式的数据集,由于数据量很大,因此它被切分成不同分区并存储在各个Worker节点的内存中.从而当我们对RDD进行操作时,实际上是对每个分区中的数据并行操作.Sp ...

  10. CF622F——自然数幂和模板&&拉格朗日插值

    题意 求 $ \displaystyle \sum_{i=1}^n i^k \ mod (1e9+7), n \leq 10^9, k \leq 10^6$. CF622F 分析 易知答案是一个 $k ...