MongoDB Map Reduce

Map-Reduce是一种计算模型,简单的说就是将大批量的工作(数据)分解(MAP)执行,然后再将结果合并成最终结果(REDUCE)。

MongoDB提供的Map-Reduce非常灵活,对于大规模数据分析也相当实用。

MapReduce 命令

以下是MapReduce的基本语法:

>db.collection.mapReduce(
function() {emit(key,value);}, //map 函数
function(key,values) {return reduceFunction}, //reduce 函数
{
out: collection,
query: document,
sort: document,
limit: number
}
)

使用 MapReduce 要实现两个函数 Map 函数和 Reduce 函数,Map 函数调用 emit(key, value), 遍历 collection 中所有的记录, 将 key 与 value 传递给 Reduce 函数进行处理。

Map 函数必须调用 emit(key, value) 返回键值对。

参数说明:

  • map :映射函数 (生成键值对序列,作为 reduce 函数参数)。
  • reduce 统计函数,reduce函数的任务就是将key-values变成key-value,也就是把values数组变成一个单一的值value。。
  • out 统计结果存放集合 (不指定则使用临时集合,在客户端断开后自动删除)。
  • query 一个筛选条件,只有满足条件的文档才会调用map函数。(query。limit,sort可以随意组合)
  • sort 和limit结合的sort排序参数(也是在发往map函数前给文档排序),可以优化分组机制
  • limit 发往map函数的文档数量的上限(要是没有limit,单独使用sort的用处不大)

以下实例在集合 orders 中查找 status:"A" 的数据,并根据 cust_id 来分组,并计算 amount 的总和。


使用 MapReduce

考虑以下文档结构存储用户的文章,文档存储了用户的 user_name 和文章的 status 字段:

>db.posts.insert({
"post_text": "菜鸟教程,最全的技术文档。",
"user_name": "mark",
"status":"active"
})
WriteResult({ "nInserted" : 1 })
>db.posts.insert({
"post_text": "菜鸟教程,最全的技术文档。",
"user_name": "mark",
"status":"active"
})
WriteResult({ "nInserted" : 1 })
>db.posts.insert({
"post_text": "菜鸟教程,最全的技术文档。",
"user_name": "mark",
"status":"active"
})
WriteResult({ "nInserted" : 1 })
>db.posts.insert({
"post_text": "菜鸟教程,最全的技术文档。",
"user_name": "mark",
"status":"active"
})
WriteResult({ "nInserted" : 1 })
>db.posts.insert({
"post_text": "菜鸟教程,最全的技术文档。",
"user_name": "mark",
"status":"disabled"
})
WriteResult({ "nInserted" : 1 })
>db.posts.insert({
"post_text": "菜鸟教程,最全的技术文档。",
"user_name": "runoob",
"status":"disabled"
})
WriteResult({ "nInserted" : 1 })
>db.posts.insert({
"post_text": "菜鸟教程,最全的技术文档。",
"user_name": "runoob",
"status":"disabled"
})
WriteResult({ "nInserted" : 1 })
>db.posts.insert({
"post_text": "菜鸟教程,最全的技术文档。",
"user_name": "runoob",
"status":"active"
})
WriteResult({ "nInserted" : 1 })

现在,我们将在 posts 集合中使用 mapReduce 函数来选取已发布的文章(status:"active"),并通过user_name分组,计算每个用户的文章数:

>db.posts.mapReduce(
function() { emit(this.user_name,1); },
function(key, values) {return Array.sum(values)},
{
query:{status:"active"},
out:"post_total"
}
)

以上 mapReduce 输出结果为:

{
"result" : "post_total",
"timeMillis" : 23,
"counts" : {
"input" : 5,
"emit" : 5,
"reduce" : 1,
"output" : 2
},
"ok" : 1
}

结果表明,共有 5 个符合查询条件(status:"active")的文档, 在map函数中生成了 5 个键值对文档,最后使用reduce函数将相同的键值分为 2 组。

具体参数说明:

  • result:储存结果的collection的名字,这是个临时集合,MapReduce的连接关闭后自动就被删除了。
  • timeMillis:执行花费的时间,毫秒为单位
  • input:满足条件被发送到map函数的文档个数
  • emit:在map函数中emit被调用的次数,也就是所有集合中的数据总量
  • ouput:结果集合中的文档个数(count对调试非常有帮助)
  • ok:是否成功,成功为1
  • err:如果失败,这里可以有失败原因,不过从经验上来看,原因比较模糊,作用不大

使用 find 操作符来查看 mapReduce 的查询结果:

>db.posts.mapReduce(
function() { emit(this.user_name,1); },
function(key, values) {return Array.sum(values)},
{
query:{status:"active"},
out:"post_total"
}
).find()

以上查询显示如下结果:

{ "_id" : "mark", "value" : 4 }
{ "_id" : "runoob", "value" : 1 }

用类似的方式,MapReduce可以被用来构建大型复杂的聚合查询。

Map函数和Reduce函数可以使用 JavaScript 来实现,使得MapReduce的使用非常灵活和强大。

 

1 篇笔记 写笔记

  1. #1

    forthxu

    for***u@gmail.com

    参考地址

    2

    临时集合参数是这样写的

    out: { inline: 1 }

    设置了 {inline:1} 将不会创建集合,整个 Map/Reduce 的操作将会在内存中进行。

    注意,这个选项只有在结果集单个文档大小在16MB限制范围内时才有效。

     db.users.mapReduce(map,reduce,{out:{inline:1}});
    
    转载自:https://www.runoob.com/mongodb/mongodb-map-reduce.html

MongoDB Map Reduce(转载)的更多相关文章

  1. 记一次MongoDB Map&Reduce入门操作

    需求说明 用Map&Reduce计算几个班级中,每个班级10岁和20岁之间学生的数量: 需求分析 学生表的字段: db.students.insert({classid:1, age:14, ...

  2. mongodb Map/reduce测试代码

    private void AccountInfo() { ls.Clear(); DateTime dt = DateTime.Now.Date; IMongoQuery query = Query& ...

  3. MongoDB Map Reduce

    介绍 Map-Reduce是一种计算模型,简单的说就是将大批量的工作分解(MAP)执行,然后再将结果合并成最终结果(REDUCE). MongoDB提供的Map-Reduce非常灵活,对于大规模数据分 ...

  4. map reduce

    作者:Coldwings链接:https://www.zhihu.com/question/29936822/answer/48586327来源:知乎著作权归作者所有,转载请联系作者获得授权. 简单的 ...

  5. ODPS 下一个map / reduce 准备

    阿里接到一个电话说练习和比赛智能二选一, 真的很伤心, 练习之前积极老龄化的权利. 要总结ODPS下一个 写map / reduce 并进行购买预测过程. 首先这里的hadoop输入输出都是表的形式, ...

  6. Demo of Python "Map Reduce Filter"

    Here I share with you a demo for python map, reduce and filter functional programming thatowned by m ...

  7. 分布式基础学习(2)分布式计算系统(Map/Reduce)

    二. 分布式计算(Map/Reduce) 分 布式式计算,同样是一个宽泛的概念,在这里,它狭义的指代,按Google Map/Reduce框架所设计的分布式框架.在Hadoop中,分布式文件 系统,很 ...

  8. Hadoop学习笔记2 - 第一和第二个Map Reduce程序

    转载请标注原链接http://www.cnblogs.com/xczyd/p/8608906.html 在Hdfs学习笔记1 - 使用Java API访问远程hdfs集群中,我们已经可以完成了访问hd ...

  9. 分布式基础学习【二】 —— 分布式计算系统(Map/Reduce)

    二. 分布式计算(Map/Reduce) 分布式式计算,同样是一个宽泛的概念,在这里,它狭义的指代,按Google Map/Reduce框架所设计的分布式框架.在Hadoop中,分布式文件系统,很大程 ...

随机推荐

  1. 移相器——K波段有源移相器设计

    博主之前在做一款K波段有源移相器,所用工艺为smic55nmll工艺,完成了几个主要模块的仿真,现对之前的工作做个总结. K波段的频率范围是18G——27GHz,所设计移相器的工作频率范围是19G—— ...

  2. 微软官方关于 Windows To Go 的常见问题

    Windows To Go:常见问题 2016/04/01 本文内容 什么是 Windows To Go? Windows To Go 是否依赖虚拟化? 哪些人员应该使用 Windows To Go? ...

  3. TCMalloc - 基本流程

    SizeMap tcmalloc通过classid将不同的小对象映射到不同的对象桶中,sizemap记录了一些对象大小和对象class的映射以及反向映射,除此之外,还记录了一些ThreadCache与 ...

  4. Fedora 31 Beta 发布

    Matthew Miller宣布发布Fedora 31 Beta.它不仅准时,而且还带来许多激动人心的更新.Fedora 31 Beta附带全新的GNOME 3.34桌面及其许多改进/功能,这对于更好 ...

  5. windows+jenkins+springboot自动构建并后台执行jar

    本文只讲述如何在windows环境下,搭建jenkins并使用,至于概念的东西请自行百度. 好了,直入主题,本人使用 jenkins.war 包进行部署,我们需要准备如下几个: openjdk8    ...

  6. 【异常】java.lang.ArithmeticException: Non-terminating decimal expansion; no exact representable decimal result.

    异常原因:没有指定数据精度导致数据运算无法正常结算 如执行下面的除法: ).divide(BigDecimal.valueOf()).intValue(); 指定精度后就可以了: ).divide(B ...

  7. Odoo中的模型详解

     转载请注明原文地址:https://www.cnblogs.com/ygj0930/p/10826118.html   [Odoo中,一切皆模型,连视图都是模型.Odoo将各种数据,如:权限数据.类 ...

  8. spark操作总结

    一.sparkContext与sparkSession区别 任何Spark程序都是SparkContext开始的,SparkContext的初始化需要一个SparkConf对象,SparkConf包含 ...

  9. SaltStack--使用salt-ssh

    SaltStack使用salt-ssh模式 salt-ssh 介绍 参考官档 salt-ssh是 0.17.0 新引入的一个功能,不需要minion对客户端进行管理,也可以不需要master:salt ...

  10. (六)Kubernetes Pod控制器-ReplicaSet和Deployment和DaemonSet

    Pod控制器相关知识 控制器的必要性 自主式Pod对象由调度器调度到目标工作节点后即由相应节点上的kubelet负责监控其容器的存活状态,容器主进程崩溃后,kubelet能够自动重启相应的容器.但对出 ...