A Robust and Modular Multi-Sensor Fusion ApproachApplied to MAV Navigation

众所周知,将来自多个传感器的信息融合用于机器人导航导致增加的鲁棒性和准确性。然而,在现场部署之前准确校准传感器集合以及传感器中断,不同的测量速率和延迟,使得多传感器融合成为挑战。因此,为了简单起见,大多数系统都没有利用所有可用的传感器信息。例如,在需要将机器人从室内转移到室外的任务中,忽视全球定位系统(GPS)信号是常态,这些信号一旦在室外就可以免费获得,而是仅依靠传感器馈送(例如,视觉和激光)连续可用。 当然,这是以牺牲实际部署的稳健性和准确性为代价的。本文介绍了一个通用的框架,称为Multi-Sensor-FusionExtended Kalman Filter(MSF-EKF),能够处理来自理论上无限数量的不同传感器和传感器类型的延迟,相对和绝对测量,允许自我校准传感器套件。MSF-EKF的模块化允许无缝处理附加/丢失的传感器信号的编程操作,同时采用增加了迭代EKF(IEKF)更新的状态缓冲方案,以允许传播的有效再线性化以获得绝对和相对状态更新的近似最佳线性化点。我们使用配备有GPS接收器的微型飞行器(MAV)以及视觉,惯性和压力传感器来演示我们在室外导航实验中的方法。

I. INTRODUCTION

在研究和工业应用中,精确和一致的定位是移动机器人的许多领域的核心问题。在需要有效解决方案的推动下,文献目前拥有大量的状态估计方法。然而,针对车载传感器套件的不同选择,所采用的框架紧密地针对手头的任务而定制。 例如,GPS馈送的使用是在开放(GPS可访问)空间中操作的平台的本地化的常用且方便的方法。相反,在GPS拒绝的环境中,通常采用基于视觉或激光的方法。 然而,跨越具有不同传感器信号可用性和适用性的域的转变仍然是一个具有挑战性的问题。

在本文中,我们提出了一种有效的方法来解决状态估计中无缝传感器馈送集成的问题。我们将重点放在基于转子的微型飞行器(MAV)上,因为它们最能够在不同的领域中行动和穿越,同时由于其高灵活性和对有效载荷和计算能力的限制而带来了微妙的挑战。

B. Self-Calibration of Sensors and Scale estimation

在导航框架中,通常以高速率估计对机器人控制至关重要的任何车辆状态,这对于诸如MAV的平台尤其重要。在典型情况下,以几百赫兹到2千赫的速率达到的惯性测量与较低速率的外部感知更新(~5-90赫兹)融合,来自例如GPS或视觉上的太阳能,以减轻漂移。常见的融合方法基于扩展(EKF)[13]或Unscented(UKF)卡尔曼滤波器[14]的间接公式。 在[10]中,表明可以以相同的方式估计额外的利息数量; 例如,本体感受器的固有校准,自体和外传感器之间的外部校准,以及来自外部传感器过程的未知量,例如单眼SLAM系统的标度和漂移。对于传感器间校准的研究,我们参考我们早期的工作[17]。

单眼视觉惯性框架的准确性由正确的尺度估计决定。在图1中,我们展示了第一个350米的MAV飞行800米飞行,速度高达4米/秒,在草地上。为了突出尺度误差,我们绘制了x和y方向上的估计和地面实况与行进距离的关系。左图强调了比例估计中的误差约为5%,而右图则在比例误差最小化时显示相同的数据。这证明了融合其他公制信息来源的潜在好处,这些信息可以在长期任务中产生更准确的估算。

在这里,我们采用这个想法来实现传感器套件的在线自校准。 此外,我们调整我们的框架来处理相对测量,以避免我们以前工作的缺点:在[16]中,局部地图被认为是无噪声的,这导致状态估计不一致。

C. Relative and absolute pose measurements

在[16]中,我们讨论了状态的不可观测性,例如视觉惯性导航系统中SLAM框架和世界框架之间的相对位置和偏航。这个问题通常通过在估计过程中固定各个状态并将视觉SLAM算法的姿势估计应用为伪绝对测量来解决[3],[14],[15]。然而,已经表明[11]应用来自视觉测试系统的相对姿态估计作为伪绝对测量导致次优估计,因为视觉测距系统(或基于关键帧的SLAM)计算的姿势的不确定性 具有有限数量的关键帧)是相对而非绝对数量。这导致不一致并且不允许估计器校正视觉SLAM系统中的漂移。在这里,我们通过采用随机克隆[12]来避免这个问题,它允许我们仅在相对上下文中包含相对测量,这也意味着我们不再将比例因子的局部估计(通常受漂移和跳跃影响)纳入 全球位置估计。这与我们之前的工作形成了鲜明的对比,其中最新的尺度估计应用于全球姿态更新,这意味着规模的小规模漂移将错误地导致全球位置估计的大幅变化。

译文:A Robust and Modular Multi-Sensor Fusion ApproachApplied to MAV Navigation的更多相关文章

  1. Sensor fusion(传感器融合)

    From Wikipedia, the free encyclopedia 来自维基百科,免费的百科Sensor fusion is combining of sensory data or data ...

  2. Udacity carnd2 Sensor Fusion, Extended Karman Filter (English)

    Extended Karman Filter Zhenglei 2018 January This is a project to estimate the car position from Lid ...

  3. 2016CVPR论文集

    http://www.cv-foundation.org/openaccess/CVPR2016.py ORAL SESSION Image Captioning and Question Answe ...

  4. CVPR2016 Paper list

    CVPR2016 Paper list ORAL SESSIONImage Captioning and Question Answering Monday, June 27th, 9:00AM - ...

  5. 三维重建7:Visual SLAM算法笔记

    VSLAM研究了几十年,新的东西不是很多,三维重建的VSLAM方法可以用一篇文章总结一下. 此文是一个好的视觉SLAM综述,对视觉SLAM总结比较全面,是SLAM那本书的很好的补充.介绍了基于滤波器的 ...

  6. cvpr2015papers

    @http://www-cs-faculty.stanford.edu/people/karpathy/cvpr2015papers/ CVPR 2015 papers (in nicer forma ...

  7. 相机IMU融合四部曲(三):MSF详细解读与使用

    相机IMU融合四部曲(三):MSF详细解读与使用 极品巧克力 前言 通过前两篇文章,<D-LG-EKF详细解读>和<误差状态四元数详细解读>,已经把相机和IMU融合的理论全部都 ...

  8. A Multi-Sensorial Simultaneous Localization and Mapping (SLAM) System for Low-Cost Micro Aerial Vehicles in GPS-Denied Environments

    A Multi-Sensorial Simultaneous Localization and Mapping (SLAM) System for Low-Cost Micro Aerial Vehi ...

  9. 斯坦福CS课程列表

    http://exploredegrees.stanford.edu/coursedescriptions/cs/ CS 101. Introduction to Computing Principl ...

随机推荐

  1. ted演讲小总结(持续更新_12月15日)

    目录 2019年12月1日 星期日 2019年12月2日 星期一 2019年12月3日 星期二 2019年12月8日 星期日 2019年12月15日 星期日(这个演讲相对来说不好理解,因为这类逻辑暂时 ...

  2. 神经网络(13)--具体实现:random initialization

    Θ应初始化为什么值 当我们是用logistic regression算法时,将θ初始化为0是可以的:但是如果在神经网络里面,将θ初始化为0是不可行的 若将Θ初始化为0的后果-the problem o ...

  3. .net框架 - Enum枚举

    概要 在C#或C++,java等一些计算机编程语言中,枚举类型是一种基本数据类型而不是构造数据类型. 在C语言等计算机编程语言中,它是一种构造数据类型. 它用于声明一组命名的常数,当一个变量有几种可能 ...

  4. js判断日期格式(YYYYMM)

    function datepanduan(obj){ var date = document.getElementById(obj.id).value; var reg = /^\b[1-3]\d{3 ...

  5. CEOI2019 / CodeForces 1192B. Dynamic Diameter

    题目简述:给定一棵$N \leq 10^5$个节点的树,边上带权,维护以下两个操作: 1. 修改一条边的边权: 2. 询问当前树的直径长度. 解1:code 注意到树的直径有以下性质: 定理:令$\t ...

  6. SpringMVC的拦截器和数据校验

    SpringMVC拦截器 什么是拦截器:Spring MVC中的拦截器(Interceptor)类似于Servlet中的过滤器(Filter),它主要用于拦截用户请求并作相应的处理.例如通过拦截器可以 ...

  7. Delphi赋

    DELPHI者,经典开发工具.美奂美仑之开发环境也. 盖论DELPHI其身世,实为神界之神物,后借宝蓝公司之手,于1990年代,现于江湖. DELPHI一出江湖,码农爱之,企业爱之.一时间,风雨雷动, ...

  8. ora-28000:the account is locked,Oracle修改密码有效期,Oracle设置密码不过期

    查询Oracle用户是否被锁定 --例如我这里是VMCXEDDB 是否被锁定 select username,account_status,lock_date from dba_users where ...

  9. FLUENT不同求解器离散格式选择【转载】

    转载自:http://blog.163.com/wu_yangfeng/blog/static/16189737920104158950438/ 离散格式对求解器性能的影响 控制方程的扩散项一般采用中 ...

  10. Javascript正则RegExp对象replace方法替换url参数值

    看别的博客有用eval执行正则表达式的写法, //替换指定传入参数的值,paramName为参数,replaceWith为新值 function replaceParamVal(paramName,r ...