Suppose LeetCode will start its IPO soon. In order to sell a good price of its shares to Venture Capital, LeetCode would like to work on some projects to increase its capital before the IPO. Since it has limited resources, it can only finish at most k distinct projects before the IPO. Help LeetCode design the best way to maximize its total capital after finishing at most k distinct projects.

You are given several projects. For each project i, it has a pure profit Pi and a minimum capital of Ci is needed to start the corresponding project. Initially, you have W capital. When you finish a project, you will obtain its pure profit and the profit will be added to your total capital.

To sum up, pick a list of at most k distinct projects from given projects to maximize your final capital, and output your final maximized capital.

Example 1:

Input: k=2, W=0, Profits=[1,2,3], Capital=[0,1,1].

Output: 4

Explanation: Since your initial capital is 0, you can only start the project indexed 0.
After finishing it you will obtain profit 1 and your capital becomes 1.
With capital 1, you can either start the project indexed 1 or the project indexed 2.
Since you can choose at most 2 projects, you need to finish the project indexed 2 to get the maximum capital.
Therefore, output the final maximized capital, which is 0 + 1 + 3 = 4. 

Note:

  1. You may assume all numbers in the input are non-negative integers.
  2. The length of Profits array and Capital array will not exceed 50,000.
  3. The answer is guaranteed to fit in a 32-bit signed integer.

假设LeetCode即将开始其首次公开募股。为了向Venture Capital出售其股票的优惠价格,LeetCode希望在IPO之前开展一些项目以增加其资本。由于资源有限,它只能在IPO之前完成最多k个不同的项目。帮助LeetCode设计在完成最多k个不同项目后使得资本最多的最佳方法。

你有几个项目。 对于每个项目i,它具有纯利润Pi,并且需要最小资本Ci来启动相应的项目。 最初你有W资本,完成项目后,您将获得纯利润,利润将被添加到您的总资本中。总之,从给定项目列表中选择最多k个不同项目,最大化最终资本,并输出您的最终最大化的资本。

解法:Priority Queue,保持当前可能的最大利润。 一旦达到所需资金就插入可能的利润。

Java:

public class Solution {
public int findMaximizedCapital(int k, int W, int[] Profits, int[] Capital) {
PriorityQueue<int[]> pqCap = new PriorityQueue<>((a, b) -> (a[0] - b[0]));
PriorityQueue<int[]> pqPro = new PriorityQueue<>((a, b) -> (b[1] - a[1])); for (int i = 0; i < Profits.length; i++) {
pqCap.add(new int[] {Capital[i], Profits[i]});
} for (int i = 0; i < k; i++) {
while (!pqCap.isEmpty() && pqCap.peek()[0] <= W) {
pqPro.add(pqCap.poll());
} if (pqPro.isEmpty()) break; W += pqPro.poll()[1];
} return W;
}
}

Python:

def findMaximizedCapital(self, k, W, Profits, Capital):
heap = []
projects = sorted(zip(Profits, Capital), key=lambda l: l[1])
i = 0
for _ in range(k):
while i < len(projects) and projects[i][1] <= W:
heapq.heappush(heap, -projects[i][0])
i += 1
if heap: W -= heapq.heappop(heap)
return W  

Python:

def findMaximizedCapital(self, k, W, Profits, Capital):
current = []
future = sorted(zip(Capital, Profits))[::-1]
for _ in range(k):
while future and future[-1][0] <= W:
heapq.heappush(current, -future.pop()[1])
if current:
W -= heapq.heappop(current)
return W  

C++:

class Solution {
public:
int findMaximizedCapital(int k, int W, vector<int>& Profits, vector<int>& Capital) {
priority_queue<pair<int, int>> maxH;
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> minH;
for (int i = 0; i < Capital.size(); ++i) {
minH.push({Capital[i], Profits[i]});
}
for (int i = 0; i < k; ++i) {
while (!minH.empty() && minH.top().first <= W) {
auto t = minH.top(); minH.pop();
maxH.push({t.second, t.first});
}
if (maxH.empty()) break;
W += maxH.top().first; maxH.pop();
}
return W;
}
};

C++:  

class Solution {
public:
int findMaximizedCapital(int k, int W, vector<int>& Profits, vector<int>& Capital) {
priority_queue<int> q;
multiset<pair<int, int>> s;
for (int i = 0; i < Capital.size(); ++i) {
s.insert({Capital[i], Profits[i]});
}
for (int i = 0; i < k; ++i) {
for (auto it = s.begin(); it != s.end(); ++it) {
if (it->first > W) break;
q.push(it->second);
s.erase(it);
}
if (q.empty()) break;
W += q.top(); q.pop();
}
return W;
}
};

  

  

All LeetCode Questions List 题目汇总

queue  [kjuː]  详细X
基本翻译
n. 队列;长队;辫子
vt. 将…梳成辫子;使…排队
vi. 排队;排队等候
网络释义
Queue: 队列
Message Queue: 消息队列
priority queue: 优先伫列

[LeetCode] 502. IPO 上市的更多相关文章

  1. Java实现 LeetCode 502 IPO(LeetCode:我疯起来连自己都卖)

    502. IPO 假设 力扣(LeetCode)即将开始其 IPO.为了以更高的价格将股票卖给风险投资公司,力扣 希望在 IPO 之前开展一些项目以增加其资本. 由于资源有限,它只能在 IPO 之前完 ...

  2. 第九周 Leetcode 502. IPO (HARD)

    Leetcode 502 一个公司 目前有资产W 可以选择实现K个项目,每个项目要求公司当前有一定的资产,且每个项目可以使公司的总资产增加一个非负数. 项目数50000 设计一个优先队列,对于当前状态 ...

  3. Leetcode 502.IPO

    IPO 假设 LeetCode 即将开始其 IPO.为了以更高的价格将股票卖给风险投资公司,LeetCode希望在 IPO 之前开展一些项目以增加其资本. 由于资源有限,它只能在 IPO 之前完成最多 ...

  4. 502 IPO 上市

    详见:https://leetcode.com/problems/ipo/description/ C++: class Solution { public: int findMaximizedCap ...

  5. [LeetCode] IPO 上市

    Suppose LeetCode will start its IPO soon. In order to sell a good price of its shares to Venture Cap ...

  6. [LeetCode解题报告] 502. IPO

    题目描述 假设 LeetCode 即将开始其 IPO.为了以更高的价格将股票卖给风险投资公司,LeetCode希望在 IPO 之前开展一些项目以增加其资本. 由于资源有限,它只能在 IPO 之前完成最 ...

  7. 【LeetCode】502. IPO

    题目 假设 LeetCode 即将开始其 IPO.为了以更高的价格将股票卖给风险投资公司,LeetCode希望在 IPO 之前开展一些项目以增加其资本. 由于资源有限,它只能在 IPO 之前完成最多 ...

  8. 502. IPO

    Suppose LeetCode will start its IPO soon. In order to sell a good price of its shares to Venture Cap ...

  9. 502. IPO(最小堆+最大堆法 or 排序法)

    题目: 链接:https://leetcode-cn.com/problems/ipo/submissions/ 假设 力扣(LeetCode)即将开始其 IPO.为了以更高的价格将股票卖给风险投资公 ...

随机推荐

  1. Please, another Queries on Array?(Codeforces Round #538 (Div. 2)F+线段树+欧拉函数+bitset)

    题目链接 传送门 题面 思路 设\(x=\prod\limits_{i=l}^{r}a_i\)=\(\prod\limits_{i=1}^{n}p_i^{c_i}\) 由欧拉函数是积性函数得: \[ ...

  2. 更改DHCP服务器默认日志存储位置

    DHCP(Dynamic Host Configuration Protocol,动态主机配置协议)是一种有效的IP 地址分配手段,已经广泛地应用于各种局域网管理.它能动态地向网络中每台计算机分配唯一 ...

  3. 《团队作业第三、四周》五阿哥小组Scrum 冲刺阶段---Day4

    <团队作业第三.四周>五阿哥小组Scrum 冲刺阶段---Day3 一.项目燃尽图 二.项目进展 20182310周烔今日进展: 主要任务一览:聊天软件主界面 20182330魏冰妍今日进 ...

  4. python中的assert

    assert 2>3, ("错误")print("haha") 如果断言处的表达式是错误的话,会打印assert后面的提示,并且下面的语句就不会执行了. ...

  5. linux学习8 运维基本功-Linux获取命令使用帮助详解

    一.Linux基础知识 1.人机交互界面: a.GUI b.CLI:[login@hostname workdir]# COMMAND 2.命令知识 通用格式:# COMMAND  OPTIONS A ...

  6. 【批处理】set命令

    原文地址:https://www.cnblogs.com/Braveliu/p/5081084.html [1]set命令简介 set,设置. [2]set命令使用 1. 打印系统环境变量.set命令 ...

  7. python 微服务开发书中几个方便的python框架

    python 微服务开发是一本讲python 如果进行微服务开发的实战类书籍,里面包含了几个很不错的python 模块,记录下,方便后期回顾学习 处理并发的模块 greenlet && ...

  8. 19-ESP8266 SDK开发基础入门篇--C# TCP客户端编写 , 连接和断开

    https://www.cnblogs.com/yangfengwu/p/11130428.html 渐渐的看过去,,,好多节了... 这节做一个C# TCP客户端 新建项目啥子的就不详细截图写了,自 ...

  9. codevs 1814 最长链题解

    codevs 1814 最长链题解 题目描述 Description 现给出一棵N个结点二叉树,问这棵二叉树中最长链的长度为多少,保证了1号结点为二叉树的根. 输入描述 Input Descripti ...

  10. [BZOJ1191]超级英雄Hero

    Description 现在电视台有一种节目叫做超级英雄,大概的流程就是每位选手到台上回答主持人的几个问题,然后根据回答问题的 多少获得不同数目的奖品或奖金.主持人问题准备了若干道题目,只有当选手正确 ...