MapReduce 程序的业务编码分为两个大部分,一部分配置程序的运行信息,一部分 编写该 MapReduce 程序的业务逻辑,并且业务逻辑的 map 阶段和 reduce 阶段的代码分别继 承 Mapper 类和 Reducer 类

1、mapreduce单词统计实例

 reduce

 二、mapreduce的核心程序运行机制

1、概述

一个完整的 mapreduce 程序在分布式运行时有两类实例进程:
 (1) MRAppMaster:负责整个程序的过程调度及状态协调  (该进程在yarn节点上)
 (2) Yarnchild:负责 map 阶段的整个数据处理流程         
 (3) Yarnchild:负责 reduce 阶段的整个数据处理流程
以上两个阶段 maptask 和 reducetask 的进程都是 yarnchild,并不是说这 maptask 和 reducetask 就跑在同一个 yarnchild 进行里
(Yarnchild进程在运行该命令的节点上)

2、mapreduce程序的运行流程(经典面试题)

(1) 一个 mr 程序启动的时候,最先启动的是 MRAppMaster, MRAppMaster 启动后根据本次 job 的描述信息,计算出需要的 maptask 实例数量,然后向集群申请机器启动相应数量的 maptask 进程
(2) maptask 进程启动之后,根据给定的数据切片(哪个文件的哪个偏移量范围)范围进行数 据处理,主体流程为:
         A、 利用客户指定的 inputformat 来获取 RecordReader 读取数据,形成输入 KV 对
         B、 将输入 KV 对传递给客户定义的 map()方法,做逻辑运算,并将 map()方法输出的 KV 对收 集到缓存
         C、 将缓存中的 KV 对按照 K 分区排序后不断溢写到磁盘文件 (超过缓存内存写到磁盘临时文件,最后都写到该文件,ruduce 获取该文件后,删除 )
(3) MRAppMaster 监控到所有 maptask 进程任务完成之后(真实情况是,某些 maptask 进 程处理完成后,就会开始启动 reducetask 去已完成的 maptask 处 fetch 数据),会根据客户指 定的参数启动相应数量的 reducetask 进程,并告知 reducetask 进程要处理的数

     据范围(数据分区)
(4) Reducetask 进程启动之后,根据 MRAppMaster 告知的待处理数据所在位置,从若干台 maptask 运行所在机器上获取到若干个 maptask 输出结果文件,并在本地进行重新归并排序, 然后按照相同 key 的 KV 为一个组,调用客户定义的 reduce()方法进行逻

   辑运算,并收集运算输出的结果 KV,然后调用客户指定的 outputformat 将结果数据输出到外部存储

    3、maptask并行度决定机制

maptask 的并行度决定 map 阶段的任务处理并发度,进而影响到整个 job 的处理速度 那么, mapTask 并行实例是否越多越好呢?其并行度又是如何决定呢?

一个 job 的 map 阶段并行度由客户端在提交 job 时决定, 客户端对 map 阶段并行度的规划
的基本逻辑为:
    将待处理数据执行逻辑切片(即按照一个特定切片大小,将待处理数据划分成逻辑上的多 个 split),然后每一个 split 分配一个 mapTask 并行实例处理
    这段逻辑及形成的切片规划描述文件,是由 FileInputFormat实现类的 getSplits()方法完成的。
    该方法返回的是 List<InputSplit>, InputSplit 封装了每一个逻辑切片的信息,包括长度和位置  信息,而 getSplits()方法返回一组 InputSplit

5、maptask并行度经验之谈

如果硬件配置为 2*12core + 64G,恰当的 map 并行度是大约每个节点 20-100 个 map,最好 每个 map 的执行时间至少一分钟。
     (1)如果 job 的每个 map 或者 reduce task 的运行时间都只有 30-40 秒钟,那么就减少该 job 的 map 或者 reduce 数,每一个 task(map|reduce)的 setup 和加入到调度器中进行调度,这个 中间的过程可能都要花费几秒钟,所以如果每个 task 都非常快就跑完了,就会在 task 的开始和结束的时候浪费太多的时间。配置 task 的 JVM 重用可以改善该问题:
    mapred.job.reuse.jvm.num.tasks,默认是 1,表示一个 JVM 上最多可以顺序执行的 task 数目(属于同一个 Job)是 1。也就是说一个 task 启一个 JVM。这个值可以在 mapred-site.xml 中进行更改, 当设置成多个,就意味着这多个 task 运行在同一个 JVM 上,但不是同时执行,是排队顺序执行
   (2)如果 input 的文件非常的大,比如 1TB,可以考虑将 hdfs 上的每个 blocksize 设大,比如 设成 256MB 或者 512MB

6、reducetask并行度决定机制

mapreduce代码:

package com.ghgj.mr.wordcount;

import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCountMR { /**
* 该main方法是该mapreduce程序运行的入口,其中用一个Job类对象来管理程序运行时所需要的很多参数:
* 比如,指定用哪个组件作为数据读取器、数据结果输出器
* 指定用哪个类作为map阶段的业务逻辑类,哪个类作为reduce阶段的业务逻辑类
* 指定wordcount job程序的jar包所在路径
* ....
* 以及其他各种需要的参数
*/
public static void main(String[] args) throws Exception {
// 指定hdfs相关的参数
Configuration conf = new Configuration();
conf.set("fs.defaultFS", "hdfs://hadoop02:9000");
System.setProperty("HADOOP_USER_NAME", "hadoop"); // conf.set("mapreduce.framework.name", "yarn");
// conf.set("yarn.resourcemanager.hostname", "hadoop04"); Job job = Job.getInstance(conf); // 设置jar包所在路径
job.setJarByClass(WordCountMR.class); // 指定mapper类和reducer类
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class); // 指定maptask的输出类型
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class); // 指定reducetask的输出类型
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); // Path inputPath = new Path("d:/wordcount/input");
// Path outputPath = new Path("d:/wordcount/output"); // 指定该mapreduce程序数据的输入和输出路径
Path inputPath = new Path("/wordcount/input");
Path outputPath = new Path("/wordcount/output");
FileSystem fs = FileSystem.get(conf);
if(fs.exists(outputPath)){
fs.delete(outputPath, true);
}
FileInputFormat.setInputPaths(job, inputPath);
FileOutputFormat.setOutputPath(job, outputPath); // job.submit();
// 最后提交任务
boolean waitForCompletion = job.waitForCompletion(true);
System.exit(waitForCompletion?0:1);
} /**
* Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT>
*
* KEYIN 是指框架读取到的数据的key的类型,在默认的InputFormat下,读到的key是一行文本的起始偏移量,所以key的类型是Long
* VALUEIN 是指框架读取到的数据的value的类型,在默认的InputFormat下,读到的value是一行文本的内容,所以value的类型是String
* KEYOUT 是指用户自定义逻辑方法返回的数据中key的类型,由用户业务逻辑决定,在此wordcount程序中,我们输出的key是单词,所以是String
* VALUEOUT 是指用户自定义逻辑方法返回的数据中value的类型,由用户业务逻辑决定,在此wordcount程序中,我们输出的value是单词的数量,所以是Integer
*
* 但是,String ,Long等jdk中自带的数据类型,在序列化时,效率比较低,hadoop为了提高序列化效率,自定义了一套序列化框架
* 所以,在hadoop的程序中,如果该数据需要进行序列化(写磁盘,或者网络传输),就一定要用实现了hadoop序列化框架的数据类型
*
* Long ----> LongWritable
* String ----> Text
* Integer ----> IntWritable
* Null ----> NullWritable
*/
static class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable>{
@Override
protected void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException { String[] words = value.toString().split(" ");
for(String word: words){
context.write(new Text(word), new IntWritable(1));
}
}
} /**
* 首先,和前面一样,Reducer类也有输入和输出,输入就是Map阶段的处理结果,输出就是Reduce最后的输出
* reducetask在调我们写的reduce方法,reducetask应该收到了前一阶段(map阶段)中所有maptask输出的数据中的一部分
* (数据的key.hashcode%reducetask数==本reductask号),所以reducetaks的输入类型必须和maptask的输出类型一样
*
* reducetask将这些收到kv数据拿来处理时,是这样调用我们的reduce方法的:
* 先将自己收到的所有的kv对按照k分组(根据k是否相同)
* 将某一组kv中的第一个kv中的k传给reduce方法的key变量,把这一组kv中所有的v用一个迭代器传给reduce方法的变量values
*/
static class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable>{
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException { int sum = 0;
for(IntWritable v: values){
sum += v.get();
}
context.write(key, new IntWritable(sum));
}
}
}

参考:https://www.cnblogs.com/liuwei6/p/6708116.html

mapreduce 函数入门 一的更多相关文章

  1. mapreduce 函数入门 三

    一.mapreduce多job串联 1.需求 一个稍复杂点的处理逻辑往往需要多个 mapreduce 程序串联处理,多 job 的串联可以借助 mapreduce 框架的 JobControl 实现 ...

  2. mapreduce 函数入门 二

    m apreduce三大组件:Combiner\Sort\Partitioner 默认组件:排序,分区(不设置,系统有默认值) 一.mapreduce中的Combiner 1.什么是combiner ...

  3. 实训任务04 MapReduce编程入门

    实训任务04 MapReduce编程入门 1.实训1:画图mapReduce处理过程 使用有短句“A friend in need is a friend in deed”,画出使用MapReduce ...

  4. python之函数入门

    python之函数入门 一. 什么是函数 二. 函数定义, 函数名, 函数体以及函数的调用 三. 函数的返回值 四. 函数的参数 五.函数名->第一类对象 六.闭包 一,什么是函数 函数: 对代 ...

  5. 指导手册05:MapReduce编程入门

    指导手册05:MapReduce编程入门   Part 1:使用Eclipse创建MapReduce工程 操作系统: Centos 6.8, hadoop 2.6.4 情景描述: 因为Hadoop本身 ...

  6. C语言第七讲,函数入门.

    C语言第七讲,函数入门. 一丶了解面向过程和面向对象的区别. 为什么要先讲面向过程和面向对象的区别? 面向过程,就是什么都要自己做.  比如你要吃饭. 那么你得自己做饭. 面向对象, 面向对象就是我要 ...

  7. OpenFaaS实战之二:函数入门

    欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...

  8. Hadoop(六)MapReduce的入门与运行原理

    一 MapReduce入门 1.1 MapReduce定义 Mapreduce是一个分布式运算程序的编程框架,是用户开发“基于hadoop的数据分析应用”的核心框架: Mapreduce核心功能是将用 ...

  9. MongoDB聚合运算之mapReduce函数的使用(11)

    mapReduce 随着"大数据"概念而流行. 其实mapReduce的概念非常简单, 从功能上说,相当于RDBMS的 group 操作 mapReduce的真正强项在哪? 答:在 ...

随机推荐

  1. SQlServer 变量定义 赋值

    declare @id int declare @name char(10) ;注意:char(10)为10位,要是位数小了会让数据出错 set @id=1 select @id=1 select @ ...

  2. C#7语法快速参考-第一章 Hello World

    选择IDE 要开始使用C#编程,您需要一个支持微软.NET框架的集成开发环境(IDE).最受欢迎的选择是微软自己的Visual Studio.初学可以使用Visual Studio Community ...

  3. C++中Matrix(矩阵)的基本运算( +、-、=、<<)

    利用二维指针开辟空间形成二维数组: 原题为设计一个Matrix类,实现基本的矩阵运算: 初次设计为HL[10][10]数组,存放矩阵元素,后改为二维指针: 主要问题存在于二维指针理解的不透彻,无法理解 ...

  4. Java初学者推荐学习书籍PDF免费下载

    场景 Effective Java 中文版Java核心技术 卷Ⅰ 基础知识(第8版)Java语言程序设计-进阶篇(原书第8版)疯狂Java讲义Java从入门到精通 第三版Java编程思想第4版重构-改 ...

  5. Jquery实现左右轮播效果

    首先展示下静态布局h5代码,代码非常简单. <div id="slide"> <ul class="pic-list"> <li& ...

  6. JS面向对象设计-创建对象

    Object构造函数和对象字面量都可以用来创建单个对象,但是在创建多个对象时,会产生大量重复代码. 1.工厂模式 工厂模式抽象了创建具体对象的过程.由于ECMAScript无法创建类,我们用函数来封装 ...

  7. 【代码笔记】Web-CSS-CSS组合选择符

    一,效果图. 二,代码. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> ...

  8. JVM问题排查工具:Serviceability-Agent介绍

    本文首发于微信公众号:javaadu 简单介绍 构建高性能的Java应用过程中,必然会遇到各种各样的问题,像CPU飙高.内存泄漏.应用奔溃,以及其他疑难杂症,这时可以使用Serviceability ...

  9. 剑指:链表中倒数第k个节点

    题目描述 输入一个链表,输出该链表中倒数第k个结点. 解法 pre 指针走 k-1 步.之后 cur 指针指向 phead,然后两个指针同时走,直至 pre 指针到达尾结点. 即cur与pre始终相距 ...

  10. Flask中before_request与after_request使用

    目录 1.前提,装饰器的弊端 2.before_request与after_request 2.1 before_request分析: 2.2 after_request分析: 3.before_re ...