Description

Suppose that the fourth generation mobile phone base stations in the Tampere area operate as follows. The area is divided into squares. The squares form an S * S matrix with the rows and columns numbered from 0 to S-1. Each square contains a base station. The number of active mobile phones inside a square can change because a phone is moved from a square to another or a phone is switched on or off. At times, each base station reports the change in the number of active phones to the main base station along with the row and the column of the matrix. 
Write a program, which receives these reports and answers queries about the current total number of active mobile phones in any rectangle-shaped area. 

Input

The input is read from standard input as integers and the answers to the queries are written to standard output as integers. The input is encoded as follows. Each input comes on a separate line, and consists of one instruction integer and a number of parameter integers according to the following table. 

The values will always be in range, so there is no need to check them. In particular, if A is negative, it can be assumed that it will not reduce the square value below zero. The indexing starts at 0, e.g. for a table of size 4 * 4, we have 0 <= X <= 3 and 0 <= Y <= 3. 
Table size: 1 * 1 <= S * S <= 1024 * 1024 
Cell value V at any time: 0 <= V <= 32767 
Update amount: -32768 <= A <= 32767 
No of instructions in input: 3 <= U <= 60002 
Maximum number of phones in the whole table: M= 2^30 

Output

Your program should not answer anything to lines with an instruction other than 2. If the instruction is 2, then your program is expected to answer the query by writing the answer as a single line containing a single integer to standard output.

Sample Input

0 4
1 1 2 3
2 0 0 2 2
1 1 1 2
1 1 2 -1
2 1 1 2 3
3

Sample Output

3
4
解题思路:这是一道二维树状数组入门题---单点修改、单点(区间)查询,其思路和一维树状数组非常相似,多加了一个维度而已。下面我们来看看怎么实现这两个基本操作:
将一维数组A[]扩展到二维数组A[][],二维树状数组C[][]来维护矩阵前缀和。
设原始二维数组A[][]={a11,a12,a13,a14,a15,
a21,a22,a23,a24,a25,
a31,a32,a33,a34,a35,
a41,a42,a43,a44,a45,
a51,a52,a53,a54,a55};
那么二维树状数组表示如下:
C[1][]=a1,C[1][]=a1+a1,C[1][]=a1,C[1][]=a1+a1+a1+a1,C[1][]=a15
这是数组A[][]第一行的一维树状数组;
C[][1]=a1+a1,C[][]=a1+a+a+a,C[][]=a+a,C[][]=a+a+a+a+a+a+a+a,C[][]=a+a5
这是数组A[][]第一行和第二行相加后得到的树状数组;
C[3][]=a3,C[3][]=a3+a3,C[3][]=a3,C[3][]=a3+a3+a3+a3,C[3][]=a35
这是数组A[][]第三行的一维树状数组;
C[][]=a+a+a+a,C[][]=a+a+a+a+a+a+a+a,C[][]=a+a+a+a...
这是数组A[][]前4行相加后得到的树状数组;
C[5][]=a5,C[5][]=a5+a5,C[5][]=a5,C[5][]=a5+a5+a5+a5,C[5][]=a55
这是数组A[][]第5行的一维树状数组。
仔细观察以上式子可以发现,二维树状数组C[x][y]的值其实是分别在x、y上的一维树状数组向下、向右(x上+lowbit(x)跳跃(>n停止),y上+lowbit(y)跳跃(>n停止))进行求和,这就是矩阵中坐标点值的单点修改。对于区间查询,同样分别在x、y上的一维树状数组从下往上,从右往左进行累加(y上-lowbit(y)跳跃(<=0停止),x上-lowbit(x)跳跃(<=0停止)),这样就得到了(1,1)到(x,y)矩阵中所有元素的和。
回到本题,题意为给出一些命令进行一些操作:
0 S 初始化一个全0的S*S矩阵,这个命令只会在第一次给出一次;
1 X Y A 给坐标点(X,Y)的值加上A;
2 L B R T 询问(L,B)到(R,T)构成的矩阵中所有元素的总和;
3 结束对矩阵的操作,程序终止。
典型的二维BIT,套一下模板即可,但需要注意一点:给出命令中的坐标都是默认从下标0开始的,为避免陷入死循环和计算错误,在更新和询问操作上统一对每一个坐标点(横、纵坐标)加1。
怎么统计坐标点(L,B)到(R,T)矩阵内所有值呢?给出下面的矩阵:
1 2 3 4 5
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0 0
从图上可得计算公式:[R,T]-[L-1,T]-[R,B-1]+[L-1,B-1](多减去了一个左上角的矩阵,还要把它加回来),这样就得到了点(L,B)到(R,T)矩阵中所有元素的和。
AC代码:
 #include<cstdio>
#include<string.h>
const int maxn=;
int op,s,x,y,a,l,b,r,t,C[maxn][maxn];
void add(int x,int y,int val){//单点修改
for(int i=x;i<=s;i+=i&-i)
for(int j=y;j<=s;j+=j&-j)
C[i][j]+=val;
}
int query(int x,int y){//前缀和查询
int ans=;
for(int i=x;i>;i-=i&-i)
for(int j=y;j>;j-=j&-j)
ans+=C[i][j];
return ans;
}
int main(){
while(~scanf("%d%d",&op,&s)){
memset(C,,sizeof(C));
while(~scanf("%d",&op)&&op!=){
if(op==){
scanf("%d%d%d",&x,&y,&a);
x++,y++;add(x,y,a);//单点修改
}
else{
scanf("%d%d%d%d",&l,&b,&r,&t);l++,b++,r++,t++;
printf("%d\n",query(r,t)-query(l-,t)-query(r,b-)+query(l-,b-));//区间查询,求矩形中所有元素的和
}
}
}
return ;
}

题解报告:poj 1195 Mobile phones(二维BIT裸题)的更多相关文章

  1. poj 1195 Mobile phones(二维树状数组)

    树状数组支持两种操作: Add(x, d)操作:   让a[x]增加d. Query(L,R): 计算 a[L]+a[L+1]……a[R]. 当要频繁的对数组元素进行修改,同时又要频繁的查询数组内任一 ...

  2. poj 1195:Mobile phones(二维树状数组,矩阵求和)

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14489   Accepted: 6735 De ...

  3. poj 1195:Mobile phones(二维线段树,矩阵求和)

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 14391   Accepted: 6685 De ...

  4. (简单) POJ 1195 Mobile phones,二维树状数组。

    Description Suppose that the fourth generation mobile phone base stations in the Tampere area operat ...

  5. POJ 1195 Mobile phones(二维树状数组)

                                                                  Mobile phones Time Limit: 5000MS   Mem ...

  6. POJ 1195 Mobile phones (二维树状数组)

    Description Suppose that the fourth generation mobile phone base stations in the Tampere area operat ...

  7. POJ 1195:Mobile phones 二维树状数组

    Mobile phones Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 16893   Accepted: 7789 De ...

  8. POJ 1195 Mobile phones【二维树状数组】

    <题目链接> 题目大意: 一个由数字构成的大矩阵,开始是全0,能进行两种操作1) 对矩阵里的某个数加上一个整数(可正可负)2) 查询某个子矩阵里所有数字的和要求对每次查询,输出结果 解题分 ...

  9. POJ 1195 Mobile phones【 二维树状数组 】

    题意:基础的二维数组,注意 0 + lowbit(0)会陷入无限循环----- 之前做一道一维的一直tle,就是因为这个-------------------------- #include<i ...

随机推荐

  1. 基于unicorn-engine的虚拟机的实现(WxSpectre)

    反病毒虚拟机是一个很有优势的工具,可以说反病毒软件是否存在模拟器是衡量反病毒软件能力的一个指标.反病毒虚拟机不光是内嵌在反病毒软件内部,来动态执行样本.这种虚拟机一般也可以单独用来动态执行批量样本,检 ...

  2. 畅通project续

    Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Submission(s) ...

  3. 【求建议】毕业之声——信院IT类毕业学子经验分享交流会

    一:缘由 在和非常多学子交流,及上课的经历中,发现一个非常普遍的现象:部分大一学生即失去了对学习.对专业的兴趣.有人在迷茫之后奋起直追.从而珍惜利用不多的大学时光努力提高自己.有人在迷茫中沉沦,沉迷于 ...

  4. OpenCV---在图片上加入文字

    /****************************************** func:cvText desc:put text on an image @param img The ima ...

  5. poj1161Post Office【经典dp】

    题目:poj1161Post Officeid=1160" target="_blank">点击打开链接 题意:给出一条直线上的n个坐标表示村庄的位置,然后要在上面 ...

  6. iOS项目开发实战——plist数组解析

    plist数据是苹果公司创造的数据格式,基于XML,因为在iOS,Mac系统中操作plist很方便,所以我们经常会用到.在iOS项目中.系统会自己主动生成一个Info.plist文件,里面存放了iOS ...

  7. DDM的成熟在一个细微之处的体现

    前言 我们都知道DDM是华为云的非常优秀的分布式数据库中间件,在性能.易用性等方面在业界是遥遥领先的.他的成熟不仅仅体现在具有快速水平平滑扩容,支持多种分布式事物类型等等这些高大上的特性上,也体现在D ...

  8. web 开发之js---ajax 中的两种返回状态 xmlhttp.status和 xmlhttp.readyState

    (1)xmlhttp.status xmlHttp.status的值(HTTP状态表)0**:未被始化 1**:请求收到,继续处理 2**:操作成功收到,分析.接受 3**:完成此请求必须进一步处理 ...

  9. 本人会linux系统的各种版本的安装,近期发教程

    小弟虽然刚刚踏入职场,可是咱大学也不是打酱油过的啊,研究过各种版本系统的安装,也都均已经实践,勿喷,有问题 咱们可以相互探讨!

  10. myecplise、ecplise项目空间优化

    1.代码自动提示补全 Window->preferences->Java->Editor->Content Assist 再右下角Auto activation trigger ...