在Python中利用CVXOPT求解二次规划问题
工作中需要用到cvxopt,cvxopt安装有坑,大家注意下.
1.首先一定要卸载numpy,无论是直接安装的,还是anaconda安装的,主要是必须用whl安装numpy才不会有包的冲突
2.二次规划包的使用
二次规划的标准形式如下
Python 代码如下
from cvxopt import matrix
import cvxopt.solvers as sol
result = sol.qp(P, Q, G, h, A, b)
问题描述:
在实际生活中,我们经常会遇到一些优化问题,简单的线性规划可以作图求解,但是对于目标函数包含二次项时,则需要另觅它法在金融实践中,马科维茨均方差模型就有实际的二次优化需求
作为金融实践中常用的方法,本篇将对CVXOPT中求解二次规划的问题进行举例详细说明,关于该方法在均方差优化中的实践应用,参见后续发帖
1、二次规划问题的标准形式
min12xTPx+qTx
s.t.Gx≤h
Ax=b
上式中,x为所要求解的列向量,xT表示x的转置
接下来,按步骤对上式进行相关说明:
上式表明,任何二次规划问题都可以转化为上式的结构,事实上用cvxopt的第一步就是将实际的二次规划问题转换为上式的结构,写出对应的P、q、G、h、A、b目标函数若为求max,可以通过乘以−1,将最大化问题转换为最小化问题Gx≤b表示的是所有的不等式约束,同样,若存在诸如x≥0的限制条件,也可以通过乘以−1转换为"≤"的形式Ax=b表示所有的等式约束
2、以一个标准的例子进行过程说明
min(x,y)12x2+3x+4y
s.t.x,y≥0
x+3y≥15
2x+5y≤100
3x+4y≤80
例子中,需要求解的是x,y,我们可以把它写成向量的形式,同时,也需要将限制条件按照上述标准形式进行调整,用矩阵形式表示,如下所示:
min(x,y)12[x\y]T[10\00][x\y]+[3\4]T[x\y]
[−10 0−1\-1−3 25 34][x\y]≤[0\0\-15\100\80]
如上所示,目标函数和限制条件均转化成了二次规划的标准形式,这是第一步,也是最难的一步,接下来的事情就简单了对比上式和标准形式,不难得出:P=[10\00],q=[3\4],G=[−10 0−1\-1−3 25 34],h=[0\0\-15\100\80]
接下来就是几行简单的代码,目的是告诉计算机上面的参数具体是什么
from cvxopt import solvers, matrix
P = matrix([[1.0,0.0],[0.0,0.0]]) # matrix里区分int和double,所以数字后面都需要加小数点
q = matrix([3.0,4.0])
G = matrix([[-1.0,0.0,-1.0,2.0,3.0],[0.0,-1.0,-3.0,5.0,4.0]])
h = matrix([0.0,0.0,-15.0,100.0,80.0])
sol = solvers.qp(P,q,G,h) # 调用优化函数solvers.qp求解
print sol['x'] # 打印结果,sol里面还有很多其他属性,读者可以自行了解
pcost dcost gap pres dres
0: 1.0780e+02 -7.6366e+02 9e+02 1e-16 4e+01
1: 9.3245e+01 9.7637e+00 8e+01 1e-16 3e+00
2: 6.7311e+01 3.2553e+01 3e+01 6e-17 1e+00
3: 2.6071e+01 1.5068e+01 1e+01 2e-16 7e-01
4: 3.7092e+01 2.3152e+01 1e+01 2e-16 4e-01
5: 2.5352e+01 1.8652e+01 7e+00 8e-17 3e-16
6: 2.0062e+01 1.9974e+01 9e-02 6e-17 3e-16
7: 2.0001e+01 2.0000e+01 9e-04 6e-17 3e-16
8: 2.0000e+01 2.0000e+01 9e-06 9e-17 2e-16
Optimal solution found.
[ 7.13e-07]
[ 5.00e+00]
看了上面的代码,是不是觉得很简单。因为难点不在代码,而是在于将实际优化问题转化为标准形式的过程在上面的例子中,并没有出现等号,当出现等式约束时,过程一样,找到A,b,然后运行代码 sol = solvers.qp(P,q,G,h,A,b) 即可求解
扩展:上述定义各个矩阵参数用的是最直接的方式,其实也可以结合Numpy来定义上述矩阵
from cvxopt import solvers, matrix
import numpy as np
P = matrix(np.diag([1.0,0])) # 对于一些特殊矩阵,用numpy创建会方便很多(在本例中可能感受不大)
q = matrix(np.array([3.0,4]))
G = matrix(np.array([[-1.0,0],[0,-1],[-1,-3],[2,5],[3,4]]))
h = matrix(np.array([0.0,0,-15,100,80]))
sol = solvers.qp(P,q,G,h)
pcost dcost gap pres dres
0: 1.0780e+02 -7.6366e+02 9e+02 1e-16 4e+01
1: 9.3245e+01 9.7637e+00 8e+01 1e-16 3e+00
2: 6.7311e+01 3.2553e+01 3e+01 6e-17 1e+00
3: 2.6071e+01 1.5068e+01 1e+01 2e-16 7e-01
4: 3.7092e+01 2.3152e+01 1e+01 2e-16 4e-01
5: 2.5352e+01 1.8652e+01 7e+00 8e-17 3e-16
6: 2.0062e+01 1.9974e+01 9e-02 6e-17 3e-16
7: 2.0001e+01 2.0000e+01 9e-04 6e-17 3e-16
8: 2.0000e+01 2.0000e+01 9e-06 9e-17 2e-16
Optimal solution found.
先写到这吧,关于二次规划在均方差优化中的实践应用,参见后续发帖,欢迎交流~~出处
发布于 2018-05-11
在Python中利用CVXOPT求解二次规划问题的更多相关文章
- Python中利用函数装饰器实现备忘功能
Python中利用函数装饰器实现备忘功能 这篇文章主要介绍了Python中利用函数装饰器实现备忘功能,同时还降到了利用装饰器来检查函数的递归.确保参数传递的正确,需要的朋友可以参考下 " ...
- python中利用matplotlib绘图可视化知识归纳
python中利用matplotlib绘图可视化知识归纳: (1)matplotlib图标正常显示中文 import matplotlib.pyplot as plt plt.rcParams['fo ...
- Python中利用原始套接字进行网络编程的示例
Python中利用原始套接字进行网络编程的示例 在实验中需要自己构造单独的HTTP数据报文,而使用SOCK_STREAM进行发送数据包,需要进行完整的TCP交互. 因此想使用原始套接字进行编程,直接构 ...
- python中利用队列asyncio.Queue进行通讯详解
python中利用队列asyncio.Queue进行通讯详解 本文主要给大家介绍了关于python用队列asyncio.Queue通讯的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细 ...
- (数据科学学习手札145)在Python中利用yarl轻松操作url
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 大家好我是费老师,在诸如网络爬虫.web应用开发 ...
- Python中利用LSTM模型进行时间序列预测分析
时间序列模型 时间序列预测分析就是利用过去一段时间内某事件时间的特征来预测未来一段时间内该事件的特征.这是一类相对比较复杂的预测建模问题,和回归分析模型的预测不同,时间序列模型是依赖于事件发生的先后顺 ...
- python中利用正则表达式匹配ip地址
现在有一道题目,要求利用python中re模块来匹配ip地址,我们应如何着手? 首先能想到的是ip地址是数字,正则表达式是如何匹配数字的呢? \d或[0-9] 对于这个问题,不要一下子上来就写匹配模式 ...
- 「Python实用秘技11」在Python中利用ItsDangerous快捷实现数据加密
本文完整示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/PythonPracticalSkills 这是我的系列文章「Python实用秘技」的第11 ...
- python中利用redis构建任务队列(queue)
Python中的使用标准queue模块就可以建立多进程使用的队列,但是使用redis和redis-queue(rq)模块使这一操作更加简单. Part 1. 比如首先我们使用队列来简单的储存数据:我们 ...
随机推荐
- HR系统-人员申请单
部门在人员缺失时,须要进行人员申请, 申请会涉及到单据的建立及审核.单据建立界面例如以下:
- 【剑指offer】合并两有序单链表
转载请注明出处:http://blog.csdn.net/ns_code/article/details/25739727 九度OJ上AC,採用归并的思想递归实现. 题目描写叙述: 输入两个单调递增的 ...
- swift 2.0 语法 常量变量
import UIKit /*: 常量变量 * 常量: let * 变量: var 完整格式: * 修饰符(let/var) 常量/变量名称: 数据类型 */ let number: Int var ...
- 【Android自己定义View实战】之自己定义超简单SearchView搜索框
[Android自己定义View实战]之自己定义超简单SearchView搜索框 这篇文章是对之前文章的翻新,至于为什么我要又一次改动这篇文章?原因例如以下 1.有人举报我抄袭,原文链接:http:/ ...
- android 4.0主线程訪问网络问题
在4.0下面,在主线程中訪问网络,假设请求超过6s的话,就会报ANR,那么这就会带来一个问题,假设网络慢或者请求的数据过大时,界面会卡顿,造成界面灵敏性非常差,因此网络请求一般不能放在主线程中操作,g ...
- WAMP 2.5 "FORBIDDEN" error
对于web开发人员来说.远程訪问站点能够非常方便的提高开发站点开发效率,那么在wamp环境下,默认仅仅支持本地訪问,那么怎样訪问开启远程站点訪问呢? 开启方法: wamp2.5(32bit) 集成环境 ...
- 【C++程序不输出】到底是什么造成了程序不输出
(ubuntu 16.04) 最近做题的时候,经常莫名其妙地,程序写的明明没毛病但是就是输出不了,气得我呀 然后某一次突然发现了原因,竟然是输出之后没有加endl或者空格! 例如: cout<& ...
- vim g 和 % 区别
vim中的g(global)和%的区别: g:全局的 s/pattern/replacement/ : 替换行中出现的每一个pattern g/pattern/s/pattern/replaceme ...
- 使用SimpleAdapter 适配器时显示网络上图片方法
SimpleAdapter listItemAdapter = new SimpleAdapter(this, listItem, R.layout.items_list, new String[] ...
- IDEA Spark Streaming 操作(套接字流)
import org.apache.spark.SparkConf import org.apache.spark.streaming.{Seconds, StreamingContext} obje ...