1497: [NOI2006]最大获利

Time Limit: 5 Sec  Memory Limit: 64 MB
Submit: 6410  Solved: 3099
[Submit][Status][Discuss]

Description

新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机遇,更是挑战。THU集团旗下的CS&T通讯公司在新一代通讯技术血战的前夜,需要做太多的准备工作,仅就站址选择一项,就需要完成前期市场研究、站址勘测、最优化等项目。在前期市场调查和站址勘测之后,公司得到了一共N个可以作为通讯信号中转站的地址,而由于这些地址的地理位置差异,在不同的地方建造通讯中转站需要投入的成本也是不一样的,所幸在前期调查之后这些都是已知数据:建立第i个通讯中转站需要的成本为Pi(1≤i≤N)。另外公司调查得出了所有期望中的用户群,一共M个。关于第i个用户群的信息概括为Ai, Bi和Ci:这些用户会使用中转站Ai和中转站Bi进行通讯,公司可以获益Ci。(1≤i≤M, 1≤Ai, Bi≤N) THU集团的CS&T公司可以有选择的建立一些中转站(投入成本),为一些用户提供服务并获得收益(获益之和)。那么如何选择最终建立的中转站才能让公司的净获利最大呢?(净获利 = 获益之和 - 投入成本之和)

Input

输入文件中第一行有两个正整数N和M 。第二行中有N个整数描述每一个通讯中转站的建立成本,依次为P1, P2, …, PN 。以下M行,第(i + 2)行的三个数Ai, Bi和Ci描述第i个用户群的信息。所有变量的含义可以参见题目描述。

Output

你的程序只要向输出文件输出一个整数,表示公司可以得到的最大净获利。

Sample Input

5 5
1 2 3 4 5
1 2 3
2 3 4
1 3 3
1 4 2
4 5 3

Sample Output

4

HINT

【样例说明】选择建立1、2、3号中转站,则需要投入成本6,获利为10,因此得到最大收益4。【评分方法】本题没有部分分,你的程序的输出只有和我们的答案完全一致才能获得满分,否则不得分。【数据规模和约定】 80%的数据中:N≤200,M≤1 000。 100%的数据中:N≤5 000,M≤50 000,0≤Ci≤100,0≤Pi≤100。

正权和-最小割

建图:把边想象出一个点 边的权值连s点 点的值连t点 对于一条边  边代表的点分别连两个点 权值INF

然后跑一遍最大流  用边权和减去最小割  

 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
#include<map>
#include<set>
#include<vector>
#include<cstdlib>
#include<string>
typedef long long ll;
typedef unsigned long long LL;
using namespace std;
const int INF=0x3f3f3f3f;
const double pi=acos(-1.0);
const double eps=0.00000001;
const int N=;
struct node{
int to,next;
int flow;
}edge[N*];
int head[N];
int dis[N];
int tot;
void init(){
memset(head,-,sizeof(head));
tot=;
}
void add(int u,int v,int flow){
edge[tot].to=v;
edge[tot].flow=flow;
edge[tot].next=head[u];
head[u]=tot++; edge[tot].to=u;
edge[tot].flow=;
edge[tot].next=head[v];
head[v]=tot++;
}
int BFS(int s,int t){
queue<int>q;
memset(dis,-,sizeof(dis));
q.push(s);
dis[s]=;
while(q.empty()==){
int u=q.front();
q.pop();
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].to;
if(dis[v]==-&&edge[i].flow){
dis[v]=dis[u]+;
q.push(v);
}
}
}
if(dis[t]==-)return ;
return ;
}
int DFS(int s,int t,int flow){
if(s==t)return flow;
int ans=;
for(int i=head[s];i!=-;i=edge[i].next){
int v=edge[i].to;
if(edge[i].flow&&dis[v]==dis[s]+){
int f=DFS(v,t,min(flow-ans,edge[i].flow));
edge[i].flow=edge[i].flow-f;
edge[i^].flow=edge[i^].flow+f;
ans=ans+f;
if(flow==ans)return flow;
}
}
if(ans==)dis[s]=-;
return ans;
}
int Dinc(int s,int t){
int flow=;
while(BFS(s,t)){
flow+=DFS(s,t,INF);
}
return flow;
}
int main(){
int n,m;
scanf("%d%d",&n,&m);
init();
int s=;
int t=m+n+;
for(int i=;i<=n;i++){
int x;
scanf("%d",&x);
add(i,t,x);
}
int sum=;
for(int i=;i<=m;i++){
int u,v,w;
scanf("%d%d%d",&u,&v,&w);
sum=sum+w;
add(s,i+n,w);
add(i+n,u,INF);
add(i+n,v,INF);
}
sum=sum-Dinc(s,t);
printf("%d\n",sum);
}

bzoj 1497(最大权闭合子图)的更多相关文章

  1. bzoj 1565 最大权闭合子图

    因为每个植物都有保护的点(每排相邻的右面的算是保护左面的),所以连他和保护 的点一条边,然后每个点有自己的权值,要找到最大的权值且满足每个点在访问时他 的前驱一定被访问,那么反向建边,转化为后继必须访 ...

  2. [BZOJ 1497][NOI 2006]最大获利(最大权闭合子图)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1497 分析: 这是在有向图中的问题,且边依赖于点,有向图中存在点.边之间的依赖关系可以 ...

  3. BZOJ 1497: [NOI2006]最大获利(最大权闭合子图)

    1497: [NOI2006]最大获利 Time Limit: 5 Sec  Memory Limit: 64 MB Description 新的技术正冲击着手机通讯市场,对于各大运营商来说,这既是机 ...

  4. BZOJ.1497.[NOI2006]最大获利(最小割 最大权闭合子图Dinic)

    题目链接 //裸最大权闭合子图... #include<cstdio> #include<cctype> #include<algorithm> #define g ...

  5. 【BZOJ】1497: [NOI2006]最大获利 最大权闭合子图或最小割

    [题意]给定n个点,点权为pi.m条边,边权为ci.选择一个点集的收益是在[点集中的边权和]-[点集点权和],求最大获利.n<=5000,m<=50000,0<=ci,pi<= ...

  6. bzoj 1497 [NOI2006]最大获利【最大权闭合子图+最小割】

    不要被5s时限和50000点数吓倒!大胆网络流!我一个5w级别的dinic只跑了1s+! 看起来没有最大权闭合子图的特征--限制,实际上还是有的. 我们需要把中转站看成负权点,把p看成点权,把客户看成 ...

  7. BZOJ.1312.[Neerc2006]Hard Life(分数规划 最大权闭合子图)

    BZOJ 最大密度子图. 二分答案\(x\),转为求是否存在方案满足:\(边数-x*点数\geq 0\). 选一条边就必须选两个点,所以可以转成最大权闭合子图.边有\(1\)的正权,点有\(x\)的负 ...

  8. BZOJ 4873 [Shoi2017]寿司餐厅 | 网络流 最大权闭合子图

    链接 BZOJ 4873 题解 当年的省选题--还记得蒟蒻的我Day1 20分滚粗-- 这道题是个最大权闭合子图的套路题.严重怀疑出题人就是先画好了图然后照着图编了个3000字的题面.和我喜欢的妹子当 ...

  9. BZOJ 1565 NOI2009 植物大战僵尸 topo+最小割(最大权闭合子图)

    题目链接:https://www.luogu.org/problemnew/show/P2805(bzoj那个实在是有点小小的辣眼睛...我就把洛谷的丢出来吧...) 题意概述:给出一张有向图,这张有 ...

随机推荐

  1. python3.x Day4 模块!!

    json and pickle模块 用途是为了持久化信息,这种持久化方式可以和其他程序语言兼容,一般都支持json,json只能持久化数据,pickle是python特有的方式,可以持久化所有信息和数 ...

  2. 树莓派 -- oled 续(2) python

    上文中的代码通过wiringPi的API调用devfs API来显示图片. 这里分析的Python代码也通过类似的方法来显示图片. 主要用到了两个Library. import spidev impo ...

  3. The Bells are Ringing(枚举)

    Description Perhaps you all have heard the mythical story about Tower of Hanoi (The details of this ...

  4. popup介绍

    一.作用 用于使浏览器自动生成弹窗 二.示例 1.新建Django项目,新建APP:app01, 项目根目录下新建文件夹static 2.静态文件配置,在settings.py中配置static: 3 ...

  5. 【Codeforces 1086B】Minimum Diameter Tree

    [链接] 我是链接,点我呀:) [题意] 题意 [题解] 统计叶子节点个数m 把每条和叶子节点相邻的边权设置成s/cnt就可以了 这样答案就是2*s/m(直径最后肯定是从一个叶子节点开始,到另外一个叶 ...

  6. CookiesReader

    CookiesReader "use strict"; /** * * @author xgqfrms * @license MIT * @copyright xgqfrms * ...

  7. bzoj4553 [Tjoi2016&Heoi2016]序列 树状数组(区间最大值)+cqd

    [Tjoi2016&Heoi2016]序列 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1006  Solved: 464[Submit][ ...

  8. Codeforces698C. LRU

    n<=20种东西,有个大小k<=n的箱子,每次会以固定的概率从所有东西里选一种,若箱子里有空位且这种东西没出现过就丢进去,若箱子满了且这种东西没出现过就把最早访问过的一个丢掉,(只要在每次 ...

  9. MVC view页面需要多个model,复杂网页的处理

    需求描述 一个比较复杂的页面,界面中包含的元素数据来自于许多个有关联或者无关联的表,然后我们要做的就是将数据呈现在界面上. 10年前大概都是这么干的 直接写一个复杂的SQL语句,返回一个包含所需数据的 ...

  10. TCP/IP学习笔记(3)----IP,ARP,RARP协议

    把这三个协议放到一起学习是因为这三个协议处于同一层(网络层协议),ARP协议用来找到目标主机的Ethernet网卡Mac地址,IP则承载要发送的消息.数据链路层可以从ARP得到数据的传送信息,而从IP ...