传送门

不难发现,对于每一条树边肯定要减小它的权值,对于每一条非树边要增加它的权值

对于每一条非树边\(j\),他肯定与某些树边构成了一个环,那么它的边权必须大于等于这个环上的所有边

设其中一条边为\(i\),变化量为\(x\),那么就要满足\(w_i-x_i\leq w_j+x_j\),即\(x_i+x_j\geq w_i-w_j\)

然后这就是个线性规划了。因为这线性规划的目标函数要取最小,所以我们把它对偶一下就可以了

//minamoto
#include<bits/stdc++.h>
#define R register
#define Loli true
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=1005,M=10005;const double eps=1e-8,inf=1e18;
struct eg{int v,nx,id;}e[N<<1];int head[N],tot;
inline void add(R int u,R int v,R int id){e[++tot]={v,head[u],id},head[u]=tot;}
int n,m,nn,mm,u,v,x,dep[N],fa[N],id[N],U[N],V[N],W[N],F[N],A[N],B[N];
double a[N][M];
void dfs(int u){go(u)if(v!=fa[u])fa[v]=u,id[v]=e[i].id,dep[v]=dep[u]+1,dfs(v);}
void pivot(int l,int e){
double t=a[l][e];a[l][e]=1;fp(i,0,m)a[l][i]/=t;
fp(i,0,n)if(i!=l&&fabs(a[i][e])>eps){
t=a[i][e],a[i][e]=0;
fp(j,0,m)a[i][j]-=t*a[l][j];
}
}
void simplex(){
while(Loli){
int l=0,e=0;double mn=inf;
fp(i,1,m)if(a[0][i]>eps){e=i;break;}if(!e)return;
fp(i,1,n)if(a[i][e]>eps&&a[i][0]/a[i][e]<mn)mn=a[i][0]/a[i][e],l=i;
pivot(l,e);
}
}
int main(){
// freopen("testdata.in","r",stdin);
nn=read(),mm=read();
fp(i,1,mm){
U[i]=read(),V[i]=read(),W[i]=read(),F[i]=read(),A[i]=read(),B[i]=read();
if(F[i])add(U[i],V[i],i),add(V[i],U[i],i);
}dfs(1),n=mm;
fp(i,1,mm)if(F[i])a[i][0]=B[i];
else{
a[i][0]=A[i],u=U[i],v=V[i];
while(u!=v){
if(dep[u]<dep[v])swap(u,v);
x=id[u];if(W[x]>W[i])++m,a[x][m]=a[i][m]=1,a[0][m]=W[x]-W[i];
u=fa[u];
}
}simplex();printf("%.0lf\n",-a[0][0]);return 0;
}

bzoj3118: Orz the MST(线性规划+单纯形法)的更多相关文章

  1. BZOJ3118 : Orz the MST

    对于树边显然只需要减少权值,对于非树边显然只需要增加权值 设i不为树边,j为树边 X[i]:i增加量 X[j]:j减少量 C[i]:修改1单位i的代价 对于每条非树边i(u,v),在树上u到v路径上的 ...

  2. BZOJ3118 Orz the MST 【单纯形 + 生成树】

    题目链接 BZOJ3118 题解 少有的单纯形好题啊 我们先抽离出生成树 生成树中的边只可能减,其它边只可能加 对于不在生成树的边,其权值一定要比生成树中其端点之间的路径上所有的边都大 然后就是一个最 ...

  3. bzoj 3118: Orz the MST(单纯形)

    题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3118 题意:给出一个图以及图中指定的n-1条边组成的生成树.每条边权值加1或者减去 ...

  4. bzoj3265: 志愿者招募加强版(线性规划+单纯形法)

    传送门 鉴于志愿者招募那题我是用网络流写的所以这里还是写一下单纯形好了-- 就是要我们求这么个线性规划(\(d_{ij}\)表示第\(i\)种志愿者在第\(j\)天能不能服务,\(x_i\)表示第\( ...

  5. BZOJ 3118 Orz the MST

    权限题qwq 如果我们要使得某棵生成树为最小生成树,那么上面的边都不能被替代,具体的,对于一个非树边,它的权值要\(\ge\)它两端点在树上的路径上的所以边的权值,所以对于每个非树边就可以对一些树边列 ...

  6. ACM模板_axiomofchoice

    目录 语法 c++ java 动态规划 多重背包 最长不下降子序列 计算几何 向量(结构体) 平面集合基本操作 二维凸包 旋转卡壳 最大空矩形 | 扫描法 平面最近点对 | 分治 最小圆覆盖 | 随机 ...

  7. 【bzoj1061】 Noi2008—志愿者招募

    http://www.lydsy.com/JudgeOnline/problem.php?id=1061 (题目链接) 题意 给定n天,第i天需要ai个志愿者,有m类志愿者,每类志愿者工作时间为[l, ...

  8. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  9. Maple入门使用教程

    http://anony3721.blog.163.com/blog/static/51197420105173915247/ 命令的运行:1.每条命令必须用":"(运行后不显示) ...

随机推荐

  1. springboot 第一个程序

    idea --> new project --> 选择Spirng Initializr --> next 傻瓜式操作  --> 添加web依赖 项目基本结构: 创建contr ...

  2. Java模拟斗地主(实现大小排序)

    import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.Li ...

  3. Windows如何在cmd命令行中查看、修改、删除与添加、设置环境变量

    首先明确一点: 所有的在cmd命令行下对环境变量的修改只对当前窗口有效,不是永久性的修改.也就是说当关闭此cmd命令行窗口后,将不再起作用.永久性修改环境变量的方法有两种:一种是直接修改注册表(此种方 ...

  4. Leetcode--easy系列10

    #205 Isomorphic Strings Given two strings s and t, determine if they are isomorphic. Two strings are ...

  5. Android 四大组件学习之Service五

    本节学习IntentService, 可能就有人问了. 什么是IntentService, IntentService有什么作用? 不是已经有了Service,那为什么还要引入IntentServic ...

  6. poj2488--A Knight&#39;s Journey(dfs,骑士问题)

    A Knight's Journey Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 31147   Accepted: 10 ...

  7. 遍历数据库全部表,将是datetime类型的列的值进行更新

    declare @tablename nvarchar(80)   declare @cloumn nvarchar(80)   declare @sql nvarchar(400) declare ...

  8. web 界面设计---大道至简

    http://www.cnblogs.com/coder2012/p/4023442.html 一个非常精简的webpy页面博客 qing.weibo.com 新浪的轻微博也不错精简

  9. 单点登录原理及实现sso

    WEB的登录那些事 说道账户登录和注册,其实我们每天都在亲身感受着,像微博.知乎还有简书等等.我们总是需要定期的去重新登录一下,对于这种认证机制,我们都能说出来两个名词,Cookie.Session. ...

  10. java 类属性、方法加载的顺序

    1.静态变量 2.静态代码块 3.局部代码块 4.构造函数 5.普通代码块 6.静态方法 7.普通方法 8.普通属性