传送门

不难发现,对于每一条树边肯定要减小它的权值,对于每一条非树边要增加它的权值

对于每一条非树边\(j\),他肯定与某些树边构成了一个环,那么它的边权必须大于等于这个环上的所有边

设其中一条边为\(i\),变化量为\(x\),那么就要满足\(w_i-x_i\leq w_j+x_j\),即\(x_i+x_j\geq w_i-w_j\)

然后这就是个线性规划了。因为这线性规划的目标函数要取最小,所以我们把它对偶一下就可以了

//minamoto
#include<bits/stdc++.h>
#define R register
#define Loli true
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=1005,M=10005;const double eps=1e-8,inf=1e18;
struct eg{int v,nx,id;}e[N<<1];int head[N],tot;
inline void add(R int u,R int v,R int id){e[++tot]={v,head[u],id},head[u]=tot;}
int n,m,nn,mm,u,v,x,dep[N],fa[N],id[N],U[N],V[N],W[N],F[N],A[N],B[N];
double a[N][M];
void dfs(int u){go(u)if(v!=fa[u])fa[v]=u,id[v]=e[i].id,dep[v]=dep[u]+1,dfs(v);}
void pivot(int l,int e){
double t=a[l][e];a[l][e]=1;fp(i,0,m)a[l][i]/=t;
fp(i,0,n)if(i!=l&&fabs(a[i][e])>eps){
t=a[i][e],a[i][e]=0;
fp(j,0,m)a[i][j]-=t*a[l][j];
}
}
void simplex(){
while(Loli){
int l=0,e=0;double mn=inf;
fp(i,1,m)if(a[0][i]>eps){e=i;break;}if(!e)return;
fp(i,1,n)if(a[i][e]>eps&&a[i][0]/a[i][e]<mn)mn=a[i][0]/a[i][e],l=i;
pivot(l,e);
}
}
int main(){
// freopen("testdata.in","r",stdin);
nn=read(),mm=read();
fp(i,1,mm){
U[i]=read(),V[i]=read(),W[i]=read(),F[i]=read(),A[i]=read(),B[i]=read();
if(F[i])add(U[i],V[i],i),add(V[i],U[i],i);
}dfs(1),n=mm;
fp(i,1,mm)if(F[i])a[i][0]=B[i];
else{
a[i][0]=A[i],u=U[i],v=V[i];
while(u!=v){
if(dep[u]<dep[v])swap(u,v);
x=id[u];if(W[x]>W[i])++m,a[x][m]=a[i][m]=1,a[0][m]=W[x]-W[i];
u=fa[u];
}
}simplex();printf("%.0lf\n",-a[0][0]);return 0;
}

bzoj3118: Orz the MST(线性规划+单纯形法)的更多相关文章

  1. BZOJ3118 : Orz the MST

    对于树边显然只需要减少权值,对于非树边显然只需要增加权值 设i不为树边,j为树边 X[i]:i增加量 X[j]:j减少量 C[i]:修改1单位i的代价 对于每条非树边i(u,v),在树上u到v路径上的 ...

  2. BZOJ3118 Orz the MST 【单纯形 + 生成树】

    题目链接 BZOJ3118 题解 少有的单纯形好题啊 我们先抽离出生成树 生成树中的边只可能减,其它边只可能加 对于不在生成树的边,其权值一定要比生成树中其端点之间的路径上所有的边都大 然后就是一个最 ...

  3. bzoj 3118: Orz the MST(单纯形)

    题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3118 题意:给出一个图以及图中指定的n-1条边组成的生成树.每条边权值加1或者减去 ...

  4. bzoj3265: 志愿者招募加强版(线性规划+单纯形法)

    传送门 鉴于志愿者招募那题我是用网络流写的所以这里还是写一下单纯形好了-- 就是要我们求这么个线性规划(\(d_{ij}\)表示第\(i\)种志愿者在第\(j\)天能不能服务,\(x_i\)表示第\( ...

  5. BZOJ 3118 Orz the MST

    权限题qwq 如果我们要使得某棵生成树为最小生成树,那么上面的边都不能被替代,具体的,对于一个非树边,它的权值要\(\ge\)它两端点在树上的路径上的所以边的权值,所以对于每个非树边就可以对一些树边列 ...

  6. ACM模板_axiomofchoice

    目录 语法 c++ java 动态规划 多重背包 最长不下降子序列 计算几何 向量(结构体) 平面集合基本操作 二维凸包 旋转卡壳 最大空矩形 | 扫描法 平面最近点对 | 分治 最小圆覆盖 | 随机 ...

  7. 【bzoj1061】 Noi2008—志愿者招募

    http://www.lydsy.com/JudgeOnline/problem.php?id=1061 (题目链接) 题意 给定n天,第i天需要ai个志愿者,有m类志愿者,每类志愿者工作时间为[l, ...

  8. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  9. Maple入门使用教程

    http://anony3721.blog.163.com/blog/static/51197420105173915247/ 命令的运行:1.每条命令必须用":"(运行后不显示) ...

随机推荐

  1. EsAlert

    https://www.cnblogs.com/zhaishaomin/p/7417306.html https://blog.csdn.net/pujiaolin/article/details/5 ...

  2. [HDU4607]Park Visit(树上最长链)

    HDU#4607. Park Visit 题目描述 Claire and her little friend, ykwd, are travelling in Shevchenko's Park! T ...

  3. 包装类Float中为什么有两个常量来表示最小值

    1)问:包装类Float中为什么有两个常量来表示最小值:MIN_VALUE和MIN_NORMAL ① MIN_VALUE:最小正非零值常量,是非规格化浮点数所能表示的最小值.值为 3.4E-45 的常 ...

  4. linux定时重启节约内存

    linux服务器上运行的一些程序,比较消耗内存,需要定时重启,进行内存定期释放 0 2 * * *  sudo /sbin/reboot && echo $(date) '重启成功' ...

  5. Oracle: 通过命令行下载安装文件

    1. 导出oracle cookies 参考:https://blog.pythian.com/how-to-download-oracle-software-using-wget-or-curl/ ...

  6. [NPM] Create a new project using the npm init <initializer> command

    Historically, the npm init command was solely use to create a new package.json file. However, as of ...

  7. Phalcon 开发工具(Phalcon Developer Tools)

    Phalcon提供的这个开发工具主要是用来辅助开发,比方生成一些程序的基本框架.生成控制器模型等. 使用这个工具我们仅仅须要一个简单的命令就可以生成应用的基本框架. 很重要: 要使用这个工具我们必需要 ...

  8. 【Mongodb教程 第三课 】MongoDB 删除数据库

    dropDatabase() 方法 MongoDB db.dropDatabase() 命令是用来删除一个现有的数据库. 语法: dropDatabase() 命令的基本语法如下: db.dropDa ...

  9. HDU 3469 Catching the Thief (博弈 + DP递推)

    Catching the Thief Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

  10. iOS 开发者中的个人账号与组织账号之间区别

    苹果对开发者主要分为3类:个人.组织(公司.企业).教育机构.即: 1.个人(Individual) 2.组织(Organizations) 组织类又分为2个小类: (1)公司(Company) (2 ...