[bzoj4591][Shoi2015][超能粒子炮·改] (lucas定理+组合计数)
Description
Input
Output
Sample Input
Sample Output
Solution
易得,
原式=C(n/2333,0)∗C(nmod2333,0)+C(n/2333,0)∗C(nmod2333,1)+...+C(n/2333,k/2333)∗C(nmod2333,kmod2333) mod 2333
也就是将原式中的各个mod 2333项拆分成两项再总体mod 2333
所以对于这道题,我们先预处理出一个S(n,k)=∑C(n,i) (i∈[0,k]) (当然最后都是mod p意义下的),ans=S(n%2333,2332)*(∑C(n/2333,j)) (j∈[0,k1)) + C(n/2333,k1)*S(n%2333,k%2333)
ans中的S()一定可以用二维的东西在规定时空内求出,而∑C(n/2333,j)就是我们超能粒子炮`改的子问题,递归求解即可,另,C(n/2333,k1)也可以用lucas定理递归来解
于是这道题就口头ac了。
00:30完成!
#include <stdio.h>
#include <string.h>
#define md 2333
#define LL long long
inline LL Rin() {
LL x=,c=getchar();
for(;c<||c>;c=getchar());
for(;c>&&c<;c=getchar())
x=x*+c-(LL);
return x; }
inline LL mod(LL x) {
return x-(x/md)*md; }
LL frac[md+],c[md+][md+],s[md+][md+];
void calc() {
frac[]=1LL;
for(int i=;i<=md;i++)
frac[i]=mod(frac[i-]*(LL)i);
c[][]=1LL;
for(int i=;i<=md;i++) {
c[i][]=c[i][i]=1LL;
for(int j=;j<i;j++)
c[i][j]=mod(c[i-][j-]+c[i-][j]); }
for(int i=;i<=md;i++) {
s[i][]=1LL;
for(int j=;j<=md;j++)
s[i][j]=mod(s[i][j-]+c[i][j]); } }
LL lucas(LL n,LL k) {
return k!=0LL?mod(c[n%md][k%md]*lucas(n/md,k/md)):1LL; }
LL getans(LL n,LL k) {
return k<0LL?0LL:mod(mod(s[mod(n)][md-]*getans(n/md,k/md-))+mod(lucas(n/md,k/md)*s[mod(n)][mod(k)])); }
int main() {
calc();
LL n,k,T=Rin();
while(T--)
n=Rin(),k=Rin(),printf("%lld\n",getans(n,k));
return ; }
[bzoj4591][Shoi2015][超能粒子炮·改] (lucas定理+组合计数)的更多相关文章
- [BZOJ4591][SHOI2015]超能粒子炮·改(Lucas定理+数位DP)
大组合数取模可以想到Lucas,考虑Lucas的意义,实际上是把数看成P进制计算. 于是问题变成求1~k的所有2333进制数上每一位数的组合数之积. 数位DP,f[i][0/1]表示从高到低第i位,这 ...
- bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]
4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...
- 【bzoj4591】[Shoi2015]超能粒子炮·改 Lucas定理
题目描述 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威力上有了本质的提 ...
- BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理
BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理 Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以 ...
- bzoj4591 [Shoi2015]超能粒子炮·改
Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以发射威力更加 强大的粒子流的神秘装置.超能粒子炮·改相比超能粒子炮,在威 ...
- P4345 [SHOI2015]超能粒子炮·改 Lucas
\(\color{#0066ff}{ 题目描述 }\) 曾经发明了脑洞治疗仪与超能粒子炮的发明家 SHTSC 又公开了他的新发明:超能粒子炮・改--一种可以发射威力更加强大的粒子流的神秘装置. 超能粒 ...
- BZOJ4591——[Shoi2015]超能粒子炮·改
1.题意:求 2.分析:公式恐惧症的同学不要跑啊QAQ 根据lucas定理-- 这一步大家都能懂吧,这是浅而易见的lucas定理转化过程,将每一项拆分成两项 那么下一步,我们将同类项合并 我们观察可以 ...
- Luogu4345 SHOI2015 超能粒子炮·改 Lucas、数位DP
传送门 模数小,还是个质数,Lucas没得跑 考虑Lucas的实质.设\(a = \sum\limits_{i=0}^5 a_i 2333^i\),\(b = \sum\limits_{i=0}^5 ...
- bzoj千题计划279:bzoj4591: [Shoi2015]超能粒子炮·改
http://www.lydsy.com/JudgeOnline/problem.php?id=4591 最后的式子合并同类项 #include<cstdio> #include<i ...
随机推荐
- gitlab smtp设置
QQ exmail gitlab_rails['smtp_enable'] = true gitlab_rails['smtp_address'] = "smtp.exmail.qq.com ...
- CrystalQuartz实现Quartz的window服务的远程管理
1. 建一个空的ASP.NET WebSite,利用NuGet安装CrystalQuartz.Remote 包 我们可以看到,配置文件中多了如下节点: <crystalQuartz> &l ...
- CodeForces 731F Video Cards (数论+暴力)
题意:给定 n 个数,可以对所有的数进行缩小,问你找出和最大的数,使得这些数都能整除这些数中最小的那个数. 析:用前缀和来做,先统计前 i 个数中有有多少数,然后再进行暴力去找最大值,每次都遍历这一段 ...
- bzoj 1638: [Usaco2007 Mar]Cow Traffic 奶牛交通【记忆化搜索】
震惊!记忆化搜索忘记返回map值调了半小时! 边(u,v)的经过次数是:能到u的牛数*v到n的方案数.正反两次连边,dfs两次即可 #include<iostream> #include& ...
- [C和指针] 1-快速上手、2-基本概念、3-数据
第1章 快速上手 1.1.1 空白和注释 程序的空白的作用: 空行将程序的不同部分分割开来:制表符缩进语句,可以更好地显示程序的结构等等. 软件最大的开销并非在于编写,而是在于维护,所以需 ...
- TCP/IP与Http与socket的关系
1 理清概念: TCP/IP是一个大的协议族(只不过TCP和IP是super star所以就这么命名了),它包括了: 应用层协议:FTP.HTTP.TELNET.SMTP.DNS(协议): 传输层协议 ...
- MyElipse如何添加Emmet插件
把这个jar文件放到myeclipse2014安装目录下dropins文件夹中,然后重启myeclipse即可. 可到window-->perferences里查看,如果成功则会看到emmet选 ...
- Java编程思想读书笔记_第6章(访问权限)
四种访问权限: public private 包访问权限 protected 如果没有明确指定package,则属于默认包 package access.dessert; public class C ...
- [ NOI 2002 ] 银河英雄传说
\(\\\) Description 有 \(n\) 列战场,每一列一开始只有一个战舰,编号就是对应的战场编号. 有 \(m\) 次操作: \(M_{i,j}\) :把 \(i\) 所在的一整列接在 ...
- [ USACO 2010 FEB ] Slowing Down
\(\\\) \(Description\) 给出一棵 \(N\) 个点的树和 \(N\) 头牛,每头牛都要去往一个节点,且每头牛去往的点一定互不相同. 现在按顺序让每一头牛去往自己要去的节点,定义一 ...