最长上升子序列的回溯 ZOJ 2432
题目大意:
找一组最长上升公共子序列,并把任意一组满足的情况输出出来
最长公共上升子序列不清楚可以先看这篇文章
http://www.cnblogs.com/CSU3901130321/p/4182618.html
然后在这基础上加回溯,我自己一开始利用两个一维数组写回溯,测了很多数据都没问题
但一直给segment fault,网上也看到有人跟我一样说不知道为什么,一维数组的代码主要函数先放在这里留待以后看能否解决,或者有大神帮忙解决
int dp[N] , a[N] , b[N] , rec[N] , fa[N] , src[N] , maxn , cnt; void LCIS(int m , int n)
{
memset(dp , , sizeof(dp));
memset(src , , sizeof(src));
memset(fa , , sizeof(fa));
for(int i = ; i<=m ; i++){
int k = ;
for(int j = ; j<=n ; j++){
if(a[i] == b[j]){
if(dp[j] < dp[k] + ){
dp[j] = dp[k] + ;
src[j] = i;
fa[i] = src[k];
}
}
if(a[i] > b[j] && dp[k] < dp[j]) k = j;
}
} maxn = , cnt = ;
int s;
for(int i = ; i <= n ; i++)
{
if(maxn < dp[i])
maxn = dp[i] , s = src[i];
}
rec[cnt++] = s;
while(fa[s]){
rec[cnt++] = fa[s];
s = fa[s];
}
}
后来自己改成了二维数组来回溯
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
const int N = ;
#define max(a,b) a>b?a:b
int dp[N] , a[N] , b[N] , rec[N] , maxn , cnt;
int s[N][N]; //用来回溯,记录前一次出现最大的j的位置,因为那个位置一定是会出现b[pos] = 某个a[i]的 void TraceBack(int i , int j)
{
if(i < || j < ) return ;
// cout<<"here: "<<i<<" "<<s[i][j]<<endl;
if(s[i][j] >= ){
rec[cnt++] = i; TraceBack(i- , s[i][j]);
}else TraceBack(i- , j);
} void LCIS(int m , int n)
{
memset(dp , , sizeof(dp));
memset(s , - , sizeof(s));
for(int i = ; i<=m ; i++){
int k = ;
for(int j = ; j<=n ; j++){
if(a[i] == b[j]){
if(dp[j] < dp[k] + ){
dp[j] = dp[k] + ;
s[i][j] = k;//记录上一次出现在最长子序列中能够进行匹配的j的位置
}
}
if(a[i] > b[j] && dp[k] < dp[j]) k = j;
}
} maxn = , cnt = ;
int pos ;
//我自己写的函数原因,所以必须找到第一个出现最大值的位置pos,保证在这个位置会出现某个a[i]与其匹配
/*这里从后往前找和从前往后找效果一样,但是输出的序列可能不同,
但是题目要求只输出一种情况所以也没问题,方向找,输出的正好是样例的结果
for(int i = 1 ; i<=n ; i++) 也确实AC了没问题
*/
for(int i = n ; i >= ; i--)
{
if(maxn < dp[i])
maxn = dp[i] , pos = i;
}
TraceBack(m , pos);
} int main()
{
int m , n , T;
scanf("%d" , &T);
while(T--){
scanf("%d" , &m);
for(int i = ; i<=m ; i++)
scanf("%d" , a+i); scanf("%d" , &n);
for(int i= ; i<=n ; i++)
scanf("%d" , b+i); LCIS(m , n); printf("%d\n" , maxn);
for(int i = cnt - ; i>= ; i--)
printf("%d " , a[rec[i]]);
printf("\n");
if(T>) puts("");
}
return ;
}
最长上升子序列的回溯 ZOJ 2432的更多相关文章
- ACM/ICPC 之 最长公共子序列计数及其回溯算法(51Nod-1006(最长公共子序列))
这道题被51Nod定为基础题(这要求有点高啊),我感觉应该可以算作一级或者二级题目,主要原因不是动态规划的状态转移方程的问题,而是需要理解最后的回溯算法. 题目大意:找到两个字符串中最长的子序列,子序 ...
- python 回溯法 子集树模板 系列 —— 14、最长公共子序列(LCS)
问题 输入 第1行:字符串A 第2行:字符串B (A,B的长度 <= 1000) 输出 输出最长的子序列,如果有多个,随意输出1个. 输入示例 belong cnblogs 输出示例 blog ...
- cf 290F. Treeland Tour 最长上升子序列 + 树的回溯 难度:1
F. Treeland Tour time limit per test 5 seconds memory limit per test 256 megabytes input standard in ...
- 最长公共子序列(LCS)、最长递增子序列(LIS)、最长递增公共子序列(LICS)
最长公共子序列(LCS) [问题] 求两字符序列的最长公共字符子序列 问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字 ...
- 用python实现最长公共子序列算法(找到所有最长公共子串)
软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...
- [Data Structure] LCSs——最长公共子序列和最长公共子串
1. 什么是 LCSs? 什么是 LCSs? 好多博友看到这几个字母可能比较困惑,因为这是我自己对两个常见问题的统称,它们分别为最长公共子序列问题(Longest-Common-Subsequence ...
- 删除部分字符使其变成回文串问题——最长公共子序列(LCS)问题
先要搞明白:最长公共子串和最长公共子序列的区别. 最长公共子串(Longest Common Substirng):连续 最长公共子序列(Longest Common Subsequence,L ...
- LCS(Longest Common Subsequence 最长公共子序列)
最长公共子序列 英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...
- 最长公共子序列(LCS问题)
先简单介绍下什么是最长公共子序列问题,其实问题很直白,假设两个序列X,Y,X的值是ACBDDCB,Y的值是BBDC,那么XY的最长公共子序列就是BDC.这里解决的问题就是需要一种算法可以快速的计算出这 ...
随机推荐
- vue用户登录状态判断
之前项目中用来判断是否登录我写了多种方案,但是最终只有一个方案是比较好的,这篇博客就是分享该方案; 先说基本要求: 项目中的登录状态是依据服务器里的状态来作为判断依据; 每一个需要登录后才能操作的接口 ...
- easyui-datebox 年月视图显示
//年月视图做法 $('#startYearDate').datebox({ onShowPanel: function () { //显示日趋选择对象后再触发弹出月份层的事件,初始化时没有生成月份层 ...
- HDU 4691 后缀数组+RMQ
思路: 求一发后缀数组,求个LCP 就好了 注意数字有可能不只一位 (样例2) //By SiriusRen #include <bits/stdc++.h> using namespac ...
- linux C编程 Makefile的使用
Makefile的作用就是"自动化编译" 一.Makefile基本规则 下面给出几个简单实例: 第一步:分别用vim创建prog.c code.c code.h三个文件 prog. ...
- J - Ananagrams(map+vector)
Description Most crossword puzzle fans are used to anagrams--groups of words with the same letters i ...
- SqlServer数据库(可疑)解决办法
-- 当数据库发生这种操作故障时,可以按如下操作步骤可解决此方法,打开数据库里的Sql 查询编辑器窗口,运行以下的命令. --1.修改数据库为紧急模式 ALTER DATABASE Zhangxing ...
- 专题九:实现类似QQ的即时通信程序
引言: 前面专题中介绍了UDP.TCP和P2P编程,并且通过一些小的示例来让大家更好的理解它们的工作原理以及怎样.Net类库去实现它们的.为了让大家更好的理解我们平常中常见的软件QQ的工作原理,所以在 ...
- ASP.NET中的<%%>介绍
一.主要用于ASP.NET前台绑定用的最多: <%#Eval("")%> <%#Bind("")%> <%=变量%> 1.& ...
- [ GDOI 2014 ] 拯救莫莉斯
\(\\\) \(Description\) 有一个 \(N\times M\) 的网格,每个格点都有权值,图是四连通的. 现在选择一个点集,使得每个格点要么被选中,要么连通的点之一被选中. 求这个点 ...
- jquery滚轮事件
// jquery 兼容的滚轮事件 $(document).on("mousewheel DOMMouseScroll", function (e) { var delta = ( ...