Floyd大家可能第一时间想到的是他求多源最短路的n³算法。其实它还有另外两种算法的嘛qwq。写一发总结好了qwq。

一、多源最短路

放段代码跑,注意枚举顺序,用邻接矩阵存图。本质是一种动规。

复杂度O(n³)。

 for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
f[i][j]=min(f[i][j],f[i][k]+f[k][j]);

放个例题跑。

灾后重建

二、传递闭包

在交际网络中,给定若干个元素,若干个二元关系,关系有传递性。传递闭包就是一种“通过传递性推导出尽量多的元素之间关系的问题”,求出可确定排名的元素个数。

实现用一个布尔型的邻接矩阵,f[i][j]=1表示i与j有关系,否则则没有关系。

我们每次可以枚举k点,来解决那些间接相关的关系处理。

 for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
f[i][j]|=f[i][k]&f[k][j];

例题 [USACO08JAN]牛大赛Cow Contest

对于奶牛的编程能力,用f[i][j]=1表示i比j强,之后就是一个裸的传递闭包。跑一遍后n²统计每只牛它与其他牛的关系是否已经确定,意思就是说只要有f[i]j]=1或f[j][i]=1其中一个就行,来统计答案。

Code

 #include<cstdio>
#include<algorithm> using namespace std; int n,m,ans;
int f[][]; int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
int x=,y=;
scanf("%d%d",&x,&y);
f[x][y]=;
}
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
f[i][j]|=f[i][k]&f[k][j];
for(int i=;i<=n;i++)
{
int j;
for(j=;j<=n;j++)
{
if(i==j) continue;
if(f[i][j]==&&f[j][i]==) break;
}
if(j>n) ans++;
}
printf("%d",ans);
return ;
}

三、求无向图最小环

例题1 USACO4.1篱笆回路

这道题难在建图,图建好以后就是裸的跑floyd找最小环了。

(瞎说一句,这题竟然有个数组开了1000的空间,但是越界了呀qwq)

Code

 /*
ID:cellur_2
TASK:fence6
LANG:C++
*/
#include<cstdio>
#include<algorithm>
#include<cstring> using namespace std;
const int inf=0x3f3f3f3f; int n,num,ans=inf;
int dis[][],mapp[][];
struct node{
int len;
int lcnt,rcnt,lid,rid,id;
int l[],r[];
}edge[]; int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%d",&edge[i].id);
int x=edge[i].id;
scanf("%d",&edge[x].len);
scanf("%d%d",&edge[x].lcnt,&edge[x].rcnt);
for(int j=;j<=edge[x].lcnt;j++)
scanf("%d",&edge[x].l[j]);
for(int j=;j<=edge[x].rcnt;j++)
scanf("%d",&edge[x].r[j]);
}
for(int i=;i<=n;i++)
{// lid 这条边左端点的点编号
// rid 这条边右端点的点编号
if(!edge[i].lid) edge[i].lid=++num;
for(int j=;j<=edge[i].lcnt;j++)
{
int x=edge[i].l[j];
bool flag=;
for(int k=;k<=edge[x].lcnt;k++)
if(edge[x].l[k]==i)
{
flag=;
break;
}
if(flag) edge[x].lid=edge[i].lid;
else edge[x].rid=edge[i].lid;
}
if(!edge[i].rid) edge[i].rid=++num;
for(int j=;j<=edge[i].rcnt;j++)
{
int x=edge[i].r[j];
bool flag=;
for(int k=;k<=edge[x].lcnt;k++)
if(edge[x].l[k]==i)
{
flag=;
break;
}
if(flag) edge[x].lid=edge[i].rid;
else edge[x].rid=edge[i].rid;
}
}
memset(mapp,0x3f,sizeof(mapp));
memset(dis,0x3f,sizeof(dis));
ans=dis[][];
for(int i=;i<=n;i++) mapp[i][i]=,dis[i][i]=;
for(int i=;i<=n;i++)
{
int lid=edge[i].lid;
int rid=edge[i].rid;
int len=edge[i].len;
mapp[rid][lid]=mapp[lid][rid]=len;
dis[rid][lid]=dis[lid][rid]=len;
}
//floyd找最小环
for(int k=;k<=num;k++)
{
for(int i=;i<k;i++)
for(int j=i+;j<k;j++)
ans=min(ans,dis[i][j]+mapp[i][k]+mapp[k][j]);
for(int i=;i<=num;i++)
for(int j=;j<=num;j++)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
}
printf("%d\n",ans);
return ;
}

例题2 POJ 1734 Sightseeing Trip

其实是floyd找最小环的板子题,但是由于题目要求输出一种合法的方案,所以我们只要再开一个vector就行了。

Code

 #include<cstdio>
#include<algorithm>
#include<vector>
#include<cstring> using namespace std;
typedef long long ll; int n,m;
int ans=0x3f3f3f3f;
int dis[][],mapp[][],pos[][];
vector<int>path; void get_path(int x,int y)
{
if(pos[x][y]==) return ;
get_path(x,pos[x][y]);
path.push_back(pos[x][y]);
get_path(pos[x][y],y);
} int main()
{
scanf("%d%d",&n,&m);
memset(dis,0x3f,sizeof(dis));
for(int i=;i<=n;i++) dis[i][i]=;
for(int i=;i<=m;i++)
{
int x=,y=,z=;
scanf("%d%d%d",&x,&y,&z);
dis[x][y]=dis[y][x]=min(dis[x][y],z);
}
memcpy(mapp,dis,sizeof(dis));
for(int k=;k<=n;k++)
{
for(int i=;i<k;i++)
for(int j=i+;j<k;j++)
if((ll)mapp[i][j]+dis[j][k]+dis[i][k]<ans)
{
ans=mapp[i][j]+dis[i][k]+dis[k][j];
path.clear();
path.push_back(i);
get_path(i,j);
path.push_back(j);
path.push_back(k);
}
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(mapp[i][j]>mapp[i][k]+mapp[k][j])
{
mapp[i][j]=mapp[i][k]+mapp[k][j];
pos[i][j]=k;
}
}
if(ans==0x3f3f3f3f)
{
printf("No solution.");
return ;
}
for(int i=;i<path.size();i++)
printf("%d ",path[i]);
return ;
}

浅谈Floyd的三种用法 By cellur925的更多相关文章

  1. iOS——浅谈iOS中三种生成随机数方法

    ios 有如下三种随机数方法:

  2. 浅谈js函数三种定义方式 & 四种调用方式 & 调用顺序

    在Javascript定义一个函数一般有如下三种方式: 函数关键字(function)语句: function fnMethodName(x){alert(x);} 函数字面量(Function Li ...

  3. 浅谈WCF的三种通信模式:请求响应模式、数据报模式和双工通讯模式

    一: WCF的服务端与客户端在通信时有三种模式:请求响应模式.数据报模式和双工通讯模式. 说一下基本知识,  1.如果想要将当前接口作为wcf服务器,则一定要加上[ServiceContract] 契 ...

  4. 浅谈c#的三个高级参数ref out 和Params C#中is与as的区别分析 “登陆”与“登录”有何区别 经典SQL语句大全(绝对的经典)

    浅谈c#的三个高级参数ref out 和Params   c#的三个高级参数ref out 和Params 前言:在我们学习c#基础的时候,我们会学习到c#的三个高级的参数,分别是out .ref 和 ...

  5. 【转】浅谈常用的几种web攻击方式

    浅谈常用的几种web攻击方式 一.Dos攻击(Denial of Service attack) 是一种针对服务器的能够让服务器呈现静止状态的攻击方式.有时候也加服务停止攻击或拒绝服务攻击.其原理就是 ...

  6. 浅谈Spring的两种配置容器

    浅谈Spring的两种配置容器 原文:https://www.jb51.net/article/126295.htm 更新时间:2017年10月20日 08:44:41   作者:黄小鱼ZZZ     ...

  7. using 的三种用法

    using 有哪三种用法? 1)引入命名空间. 2)给命名空间或者类型起别名. 3)划定作用域.自动释放资源,使用该方法的类型必须实现了 System.IDisposable接口,当对象脱离作用域之后 ...

  8. Js闭包常见三种用法

        Js闭包特性源于内部函数可以将外部函数的活动对象保存在自己的作用域链上,所以使内部函数的可以将外部函数的活动对象占为己有,可以在外部函数销毁时依然存有外部函数内的活动对象内容,这样做的好处是可 ...

  9. .NET(c#)new关键字的三种用法

    前几天去家公司面试,有一道这样的题:写出c#中new关键字的三种用法,思前想后挖空心思也只想出了两种用法,回来查了下msdn,还真是有第三种用法:用于在泛型声明中约束可能用作类型参数的参数的类型,这是 ...

随机推荐

  1. HDU 5289 Assignment(多校联合第一场1002)

    Assignment Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total ...

  2. ftk学习记(combox篇)

    [声明:版权全部,欢迎转载,请勿用于商业用途.  联系信箱:feixiaoxing @163.com] 上一篇文章谈到了多窗体,还是依照约定看一下效果是什么样的. 假设大家细心一点.就会发现窗体中的l ...

  3. Mysql 数据库中间件

    读写分离:简单的说是把对数据库读和写的操作分开对应不同的数据库服务器,这样能有效地减轻数据库压力,也能减轻io压力.主数据库提供写操作,从数据库提供读操作,其实在很多系统中,主要是读的操作.当主数据库 ...

  4. layer弹出层不居中解决方案,仅显示遮罩,没有弹窗

    问题:项目中layer询问层的弹窗仅显示遮罩层,并不显示弹窗…… 原因:图片太多将layer弹窗挤出屏幕下方,看不见了…… 解决方案:让layer的弹出层居中显示 一.问题描述 用layer做操作结果 ...

  5. eclipse配置android

    先在eclipse中安装ADT插件,install内点击add,name:ADT, URL:http://dl-ssl.google.com/android/eclipse/ 之后直接finish就好 ...

  6. HDU 3639 Hawk-and-Chicken

    Hawk-and-Chicken Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

  7. Hadoop之HDFS文件操作

    摘要:Hadoop之HDFS文件操作常有两种方式.命令行方式和JavaAPI方式.本文介绍怎样利用这两种方式对HDFS文件进行操作. 关键词:HDFS文件    命令行     Java API HD ...

  8. Mac JDK 多版本共存

    1.    安装各JDK版本,安装后通过Java -version检测是否安装好    2.    打开~/.bash_profile,没有的话创建    vim ~/.bash_profile   ...

  9. vue 使用html2canvas将DOM转化为图片

    一.前言 我发现将DOM转化为图片是一个非常常见的需求,而自己手动转是非常麻烦的,于是找到了html2canvas这个插件,既是用得比较多的也是维护得比较好的一个插件. 注意:版本比较多,这里介绍最新 ...

  10. dns服务器报错解决

    搭了个dns服务器,配置完毕老是报错,这里总结一下常见思路: ①关闭firewalld ②关闭selinux ③/var/named里面的配置文件所属用户组是否是root:named ④named.c ...