HDU 3537 Mock Turtles型翻硬币游戏
题目大意:
每次可以翻1个或者2个或者3个硬币,但要保证最右边的那个硬币是正面的,直到不能操作为输,这题目还有说因为主人公感情混乱可能描述不清会有重复的硬币说出,所以要去重
这是一个Mock Turtles型翻硬币游戏
下面是对这个类型游戏的讲解
约束条件6:每次可以翻动一个、二个或三个硬币。(Mock Turtles游戏)
初始编号从0开始。
当N==1时,硬币为:正,先手必胜,所以sg[0]=1.
当N==2时,硬币为:反正,先手必赢,先手操作后可能为:反反或正反,方案数为2,所以sg[1]=2。
当N==3时,硬币为:反反正,先手必赢,先手操作后可能为:反反反、反正反、正反正、正正反,方案数为4,所以sg[2]=4。
位置x:0 1 2 3 4 5 6 7 8 9 10 11 12 13 14...
sg[x]: 1 2 4 7 8 11 13 14 16 19 21 22 25 26 28…
看上去sg值为2x或者2x+1。我们称一个非负整数为odious,当且仅当该数的二进制形式的1出现的次数是奇数,否则称作evil。所以1,2,4,7是odious因为它们的二进制形式是1,10,100,111.而0,3,5,6是evil,因为它们的二进制形式是0,11,101,110。而上面那个表中,貌似sg值都是odious数。所以当2x为odious时,sg值是2x,当2x是evil时,sg值是2x+1.
这样怎么证明呢?我们会发现发现,
evil^evil=odious^odious=evil
evil^odious=odious^evil=odious
假设刚才的假说是成立的,我们想证明下一个sg值为下一个odious数。注意到我们总能够在第x位置翻转硬币到达sg为0的情况;通过翻转第x位置的硬币和两个其它硬币,我们可以移动到所有较小的evil数,因为每个非零的evil数都可以由两个odious数异或得到;但是我们不能移动到下一个odious数,因为任何两个odious数的异或都是evil数。
假设在一个Mock Turtles游戏中的首正硬币位置x1,x2,…,xn是个P局面,即sg[x1]^…^sg[xn]=0.那么无可置疑的是n必定是偶数,因为奇数个odious数的异或是odious数,不可能等于0。而由上面可知sg[x]是2x或者2x+1,sg[x]又是偶数个,那么x1^x2^…^xn=0。相反,如果x1^x2^…^xn=0且n是偶数,那么sg[x1]^…^sg[xn]=0。这个如果不太理解的话,我们可以先这么看下。2x在二进制当中相当于把x全部左移一位,然后补零,比如说2的二进制是10,那么4的二进制就是100。而2x+1在二进制当中相当于把x全部左移一位,然后补1,比如说2的二进制是10,5的二进制是101。现在看下sg[x1]^…^sg[xn]=0,因为sg[x]是2x或者2x+1,所以式子中的2x+1必须是偶数个(因为2x的最后一位都是0,2x+1的最后一位都是1,要最后异或为0,2x+1必须出现偶数次)。实际上的情况可能是这样的:
MT游戏当中的P局面是拥有偶数堆石子的Nim游戏的P局面。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; const int N = ;
int a[N]; bool ok(int x)
{
int k=;
while(x){
if(x&) k++;
x>>=;
}
return k&;
} int main()
{
// freopen("a.in" , "r" , stdin);
int n;
while(scanf("%d" , &n) == )
{
for(int i= ; i<n ; i++){
scanf("%d" , &a[i]);
}
//可能存在重复的需要去重
sort(a,a+n);
int k = unique(a,a+n)-a; int ans = ;
for(int i= ; i<k ; i++){
a[i]*=;
if(!ok(a[i])) a[i]++;
ans^=a[i];
}
if(ans) puts("No");
else puts("Yes");
}
return ;
}
HDU 3537 Mock Turtles型翻硬币游戏的更多相关文章
- HDU 3537 Daizhenyang's Coin 翻硬币博弈
题意: 给你n个硬币,你可以从中拿出来1.2.3个硬币,它们不一定要连续,你只需要保证拿出来的硬币中那个下标最大的硬币一定要是正面朝上,最后谁不能操作,谁就输了 题解: 翻硬币游戏 结论: 局面的SG ...
- hdu 3537 Daizhenyang's Coin(博弈-翻硬币游戏)
题意:每次可以翻动一个.二个或三个硬币.(Mock Turtles游戏) 初始编号从0开始. 当N==1时,硬币为:正,先手必胜,所以sg[0]=1. 当N==2时,硬币为:反正,先手必赢,先手操作后 ...
- hdu 3537 Daizhenyang's Coin (翻硬币游戏)
#include<stdio.h> #include<algorithm> #include<string.h> using namespace std; ]; i ...
- HDU 3537 基础翻硬币模型 Mock Turtles 向NIM转化
翻硬币游戏,任意选3个,最右边的一个必须是正面.不能操作者败. 基本模型..不太可能自己推 还是老实记下来吧..对于单个硬币的SG值为2x或2x+1,当该硬币的位置x,其二进制1的个数为偶数时,sg= ...
- hdu 3537(博弈,翻硬币)
题意:给定了每个正面朝上的硬币的位置,然后每次可以翻1,2,3枚硬币,并且最右边的硬币开始必须是正面朝上的. 分析: 约束条件6:每次可以翻动一个.二个或三个硬币.(Mock Turtles游戏) 初 ...
- hdu 3537 翻硬币 每次能翻1个 或2个 或3个
N 枚硬币排成一排,有的正面朝上,有的反面朝上.我们从左开始对硬币按1 到N 编号. 第一,游戏者根据某些约束翻硬币,但他所翻动的硬币中,最右边那个硬币的必须是从正面翻到反面. 第二,谁不能翻谁输. ...
- 【hdu 3537】Daizhenyang's Coin
Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s) ...
- HDU 3537
翻硬币游戏,纯.. 注意要判重 #include <iostream> #include <cstdio> #include <cstring> #include ...
- HDU 3537 (博弈 翻硬币) Daizhenyang's Coin
可以参考Thomas S. Ferguson的<Game Theory>,网上的博客大多也是根据这个翻译过来的,第五章讲了很多关于翻硬币的博弈. 这种博弈属于Mock Turtles,它的 ...
随机推荐
- 随机L系统分形树 分类: 计算机图形学 2014-06-01 23:27 376人阅读 评论(0) 收藏
下面代码需要插入到MFC项目中运行,实现了计算机图形学中的L系统分形树. class Node { public: int x,y; double direction; Node(){} }; CSt ...
- Android 线程池系列教程(1)目录
Sending Operations to Multiple Threads 1.Dependencies and prerequisites Android 3.0 (API Level 11) o ...
- Android偏好设置(5)偏好设置界面显示多个分组,每个分组也有一个界面
1.Using Preference Headers In rare cases, you might want to design your settings such that the first ...
- SimpleDateForma类
package Format_daqo; import java.text.SimpleDateFormat; import java.util.Date; public class SimpleDa ...
- oracle如何实现函数、包、存储过程加密
首先创建一个名称为test1.sql的文件: CREATE OR REPLACE FUNCTION get_date_string RETURN VARCHAR2 AS BEGIN RETURN TO ...
- JMeter(十三)进行简单的数据库(mysql)压力测试
1.点击测试计划,再点击“浏览”,把JDBC驱动添加进来: 注:JDBC驱动一般的位置在java的安装地址下,路径类似于: \java\jre\lib\ext 文件为:mysql-connect ...
- MySQL多表
一.外键 1.外键:链接两张表的字段,通过主表的主键和从表的外键来描述主外键关系,呈现的是一对多的关系.例如:商品类别(一)对商品(多),主表:商品类别表,从表:商品表. 2.外键的特点:从表外键的值 ...
- A/B宣言
作者:Dunne & Raby A B 肯定的 批判的 解决问题的 发现问题的 设计即流程 设计即方法 给出答案 问问题 为行业中服务 为社会服务 说明世界是怎样的 说明世界可能是怎样的 科 ...
- ios开发介绍
iOS开发概述 •什么是IOS •什么是IOS开发 •为什么要选择IOS开发 •学习IOS开发的准备 1.什么是iOS •iOS是一款由苹果公司开发的操作系统(OS是Operating Sys ...
- qt5.8 链接mysql错误:driver not load
转载请注明出处:http://www.cnblogs.com/dachen408/p/7155858.html 问题:qt5.8 链接mysql错误:driver not load. 解决方案:1.安 ...