题目大意:

每次可以翻1个或者2个或者3个硬币,但要保证最右边的那个硬币是正面的,直到不能操作为输,这题目还有说因为主人公感情混乱可能描述不清会有重复的硬币说出,所以要去重

这是一个Mock Turtles型翻硬币游戏

下面是对这个类型游戏的讲解

约束条件6:每次可以翻动一个、二个或三个硬币。(Mock Turtles游戏)

初始编号从0开始。

当N==1时,硬币为:正,先手必胜,所以sg[0]=1.

当N==2时,硬币为:反正,先手必赢,先手操作后可能为:反反或正反,方案数为2,所以sg[1]=2。

当N==3时,硬币为:反反正,先手必赢,先手操作后可能为:反反反、反正反、正反正、正正反,方案数为4,所以sg[2]=4。

位置x:0  1  2  3  4   5    6   7    8     9  10  11  12  13  14...

sg[x]:  1  2  4  7  8  11 13 14  16  19  21  22  25  26  28…

看上去sg值为2x或者2x+1。我们称一个非负整数为odious,当且仅当该数的二进制形式的1出现的次数是奇数,否则称作evil。所以1,2,4,7是odious因为它们的二进制形式是1,10,100,111.而0,3,5,6是evil,因为它们的二进制形式是0,11,101,110。而上面那个表中,貌似sg值都是odious数。所以当2x为odious时,sg值是2x,当2x是evil时,sg值是2x+1.

这样怎么证明呢?我们会发现发现,

evil^evil=odious^odious=evil

evil^odious=odious^evil=odious

假设刚才的假说是成立的,我们想证明下一个sg值为下一个odious数。注意到我们总能够在第x位置翻转硬币到达sg为0的情况;通过翻转第x位置的硬币和两个其它硬币,我们可以移动到所有较小的evil数,因为每个非零的evil数都可以由两个odious数异或得到;但是我们不能移动到下一个odious数,因为任何两个odious数的异或都是evil数。

假设在一个Mock Turtles游戏中的首正硬币位置x1,x2,…,xn是个P局面,即sg[x1]^…^sg[xn]=0.那么无可置疑的是n必定是偶数,因为奇数个odious数的异或是odious数,不可能等于0。而由上面可知sg[x]是2x或者2x+1,sg[x]又是偶数个,那么x1^x2^…^xn=0。相反,如果x1^x2^…^xn=0且n是偶数,那么sg[x1]^…^sg[xn]=0。这个如果不太理解的话,我们可以先这么看下。2x在二进制当中相当于把x全部左移一位,然后补零,比如说2的二进制是10,那么4的二进制就是100。而2x+1在二进制当中相当于把x全部左移一位,然后补1,比如说2的二进制是10,5的二进制是101。现在看下sg[x1]^…^sg[xn]=0,因为sg[x]是2x或者2x+1,所以式子中的2x+1必须是偶数个(因为2x的最后一位都是0,2x+1的最后一位都是1,要最后异或为0,2x+1必须出现偶数次)。实际上的情况可能是这样的:

MT游戏当中的P局面是拥有偶数堆石子的Nim游戏的P局面。

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; const int N = ;
int a[N]; bool ok(int x)
{
int k=;
while(x){
if(x&) k++;
x>>=;
}
return k&;
} int main()
{
// freopen("a.in" , "r" , stdin);
int n;
while(scanf("%d" , &n) == )
{
for(int i= ; i<n ; i++){
scanf("%d" , &a[i]);
}
//可能存在重复的需要去重
sort(a,a+n);
int k = unique(a,a+n)-a; int ans = ;
for(int i= ; i<k ; i++){
a[i]*=;
if(!ok(a[i])) a[i]++;
ans^=a[i];
}
if(ans) puts("No");
else puts("Yes");
}
return ;
}

HDU 3537 Mock Turtles型翻硬币游戏的更多相关文章

  1. HDU 3537 Daizhenyang's Coin 翻硬币博弈

    题意: 给你n个硬币,你可以从中拿出来1.2.3个硬币,它们不一定要连续,你只需要保证拿出来的硬币中那个下标最大的硬币一定要是正面朝上,最后谁不能操作,谁就输了 题解: 翻硬币游戏 结论: 局面的SG ...

  2. hdu 3537 Daizhenyang's Coin(博弈-翻硬币游戏)

    题意:每次可以翻动一个.二个或三个硬币.(Mock Turtles游戏) 初始编号从0开始. 当N==1时,硬币为:正,先手必胜,所以sg[0]=1. 当N==2时,硬币为:反正,先手必赢,先手操作后 ...

  3. hdu 3537 Daizhenyang's Coin (翻硬币游戏)

    #include<stdio.h> #include<algorithm> #include<string.h> using namespace std; ]; i ...

  4. HDU 3537 基础翻硬币模型 Mock Turtles 向NIM转化

    翻硬币游戏,任意选3个,最右边的一个必须是正面.不能操作者败. 基本模型..不太可能自己推 还是老实记下来吧..对于单个硬币的SG值为2x或2x+1,当该硬币的位置x,其二进制1的个数为偶数时,sg= ...

  5. hdu 3537(博弈,翻硬币)

    题意:给定了每个正面朝上的硬币的位置,然后每次可以翻1,2,3枚硬币,并且最右边的硬币开始必须是正面朝上的. 分析: 约束条件6:每次可以翻动一个.二个或三个硬币.(Mock Turtles游戏) 初 ...

  6. hdu 3537 翻硬币 每次能翻1个 或2个 或3个

    N 枚硬币排成一排,有的正面朝上,有的反面朝上.我们从左开始对硬币按1 到N 编号. 第一,游戏者根据某些约束翻硬币,但他所翻动的硬币中,最右边那个硬币的必须是从正面翻到反面. 第二,谁不能翻谁输. ...

  7. 【hdu 3537】Daizhenyang's Coin

    Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s) ...

  8. HDU 3537

    翻硬币游戏,纯.. 注意要判重 #include <iostream> #include <cstdio> #include <cstring> #include ...

  9. HDU 3537 (博弈 翻硬币) Daizhenyang's Coin

    可以参考Thomas S. Ferguson的<Game Theory>,网上的博客大多也是根据这个翻译过来的,第五章讲了很多关于翻硬币的博弈. 这种博弈属于Mock Turtles,它的 ...

随机推荐

  1. 简单备份11g db (文件系统)

    1.more check.sqlsqlplus / as sysdba << EOF!banner start dbstartupselect name from v\$database; ...

  2. Kali linux 2016.2(Rolling)里的应用更新和配置额外安全工具

    写在前面的话 你去打人家 ,你不伪装一下,化化妆 ,穿上盔甲,难道你傻逼一样的    拿着棍子就去打人家,人家 一眼不认出你是谁了.做坏事要伪装好自己 ,要把自己藏起来 ,让别人找不到你,你以为网络公 ...

  3. Java BigDecimal类的使用和注意事项

    1.对于金额相关运算,若是精度较高,基本上用BigDecimal进行运算,精度要求低的话用Long.Double即可 2.web后台接受金额用String接受,展示到前端一般也转成 String 3. ...

  4. 函数的返回值return

    '''1.什么是返回值 返回值是一个函数的处理结果 2.为什么要有返回值 如果我们需要在程序中拿到函数的处理结果做进一步的处理,则需要函数必须有返回值 3.函数的返回值的应用 函数的返回值用retur ...

  5. hihocoder1710 等差子数列

    思路: 将数列合并之后使用线段树.边界条件容易写错. 实现: #include <bits/stdc++.h> using namespace std; ; const int INF = ...

  6. Android学习笔记(十) Activity的生命周期

    一.如何在一个应用程序中定义多个Activity -定义一个类,继承Activity -复写onCreate() setContentView(R.layout.secondLayout):设定该Ac ...

  7. SQL将查询出来的多列的值拼接成一个字符串

    -- 单列拼接,先查出一行,再加上逗号,接着拼接 查出的下一行 SELECT GROUP_CONCAT(user_id) FROM user; -- result 160,160,160,196 -- ...

  8. vue2.0版本指令v-if与v-show的区别

    v-if: 判断是否加载,可以减轻服务器的压力,在需要时加载. v-show:调整css dispaly属性,可以使客户端操作更加流畅. v-if示例: <!DOCTYPE html> & ...

  9. codevs 1082 线段树练习 3 --分块练习

    时间限制: 3 s  空间限制: 128000 KB  题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区间[a,b]的所有数增加X 2:询问区间[ ...

  10. 51nod 1551 集合交易 最大权闭合子图

    题意: 市场中有n个集合在卖.我们想买到满足以下要求的一些集合,所买到集合的个数要等于所有买到的集合合并后的元素的个数. 每个集合有相应的价格,要使买到的集合花费最小. 这里我们的集合有一个特点:对于 ...