[bzoj2738]矩阵乘法_整体二分_树状数组
矩阵乘法 bzoj-2738
题目大意:给定一个$n*n$的矩阵。每次给定一个矩阵求矩阵$k$小值。
注释:$1\le n\le 500$,$1\le q\le 6\cdot 10^4$。
想法:
新操作整体二分。
整体二分是一个必须离线的算法而且所求的答案必须满足单调性。
所谓单调性就是比如这个题:k越大那么对应的答案越大。
进而我们将所有操作在权值上整体二分。
每次假设当前权值区间为$[l,r]$。
先用二维树状数组求出每个矩形[l,mid]中的点个数然后暴力转移即可。
暴力转移就是看一下$k_i$和个数哪个比较大,考虑把当前操作扔进左区间还是右区间。
Code:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 510
#define M 60010
using namespace std;
int tree[N<<1][N<<1],ans[M],n,m;
struct pnt {int x,y,val;}a[N*N]; inline bool cmp(const pnt &a,const pnt &b) {return a.val<b.val;}
struct Node {int x1,x2,y1,y2,k,id;}q[M],t[M];
inline char nc() {static char *p1,*p2,buf[100000]; return (p1==p2)&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;}
int rd() {int x=0; char c=nc(); while(!isdigit(c)) c=nc(); while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=nc(); return x;}
inline int lowbit(int x) {return x&(-x);}
void update(int x,int y,int val)
{
for(int i=x;i<=n+1;i+=lowbit(i)) for(int j=y;j<=n+1;j+=lowbit(j)) tree[i][j]+=val;
}
int query(int x,int y)
{
int ans=0; for(int i=x;i>=1;i-=lowbit(i)) for(int j=y;j>=1;j-=lowbit(j)) ans+=tree[i][j];
return ans;
}
void solve(int x,int y,int l,int r)
{
int tl=x,tr=y;
if(x>y) return;
if(l==r)
{
for(int i=x;i<=y;i++) ans[q[i].id]=a[l].val;
return;
}
int mid=(l+r)>>1;
for(int i=l;i<=mid;i++) update(a[i].x,a[i].y,1);
for(int i=x;i<=y;i++)
{
int dlt=query(q[i].x1-1,q[i].y1-1)+query(q[i].x2,q[i].y2)-query(q[i].x1-1,q[i].y2)-query(q[i].x2,q[i].y1-1);
if(q[i].k<=dlt) t[tl++]=q[i];
else q[i].k-=dlt,t[tr--]=q[i];
}
for(int i=x;i<=y;i++) q[i]=t[i];
for(int i=l;i<=mid;i++) update(a[i].x,a[i].y,-1);
solve(x,tr,l,mid); solve(tl,y,mid+1,r);
}
int main()
{
n=rd(),m=rd(); for(int i=1;i<=n;i++) for(int j=1;j<=n;j++)
{
int id=(i-1)*n+j;
a[id].val=rd(); a[id].x=i,a[id].y=j;
}
sort(a+1,a+n*n+1,cmp);
for(int i=1;i<=m;i++) q[i].x1=rd(),q[i].y1=rd(),q[i].x2=rd(),q[i].y2=rd(),q[i].k=rd(),q[i].id=i;
solve(1,m,1,n*n);
for(int i=1;i<=m;i++) printf("%d\n",ans[i]);
return 0;
}
小结:整体二分好好玩~
[bzoj2738]矩阵乘法_整体二分_树状数组的更多相关文章
- 【BZOJ4009】[HNOI2015]接水果 DFS序+整体二分+扫描线+树状数组
[BZOJ4009][HNOI2015]接水果 Description 风见幽香非常喜欢玩一个叫做 osu!的游戏,其中她最喜欢玩的模式就是接水果.由于她已经DT FC 了The big black, ...
- BZOJ 4009: [HNOI2015]接水果 (整体二分+扫描线 树状数组)
整体二分+扫描线 树状数组 具体做法看这里a CODE #include <cctype> #include <cstdio> #include <cstring> ...
- [BZOJ2738]矩阵乘法(整体二分+二维树状数组)
整体二分+二维树状数组. 好题啊!写了一个来小时. 一看这道题,主席树不会搞,只能用离线的做法了. 整体二分真是个好东西,啥都可以搞,尤其是区间第 \(k\) 大这种东西. 我们二分答案,然后用二维树 ...
- bzoj4009 [HNOI2015]接水果 整体二分+扫描线+树状数组+dfs序
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4009 题解 考虑怎样的情况就会有一个链覆盖另一个链. 设被覆盖的链为 \(a - b\),覆盖 ...
- Luogu3527 POI2011 Meteors 整体二分、树状数组、差分
传送门 比较板子的整体二分题目,时限有点紧注意常数 整体二分的过程中将时间在\([l,mid]\)之间的流星使用树状数组+差分进行维护,然后对所有国家查看一遍并分好类,递归下去,记得消除答案在\([m ...
- BZOJ2738 矩阵乘法(整体二分+树状数组)
单个询问二分答案即可,多组询问直接整体二分再二维BIT.注意保证复杂度. #include<iostream> #include<cstdio> #include<cma ...
- BZOJ2738 矩阵乘法 【整体二分 + BIT】
题目链接 BZOJ2738 题解 将矩阵中的位置取出来按权值排序 直接整体二分 + 二维BIT即可 #include<algorithm> #include<iostream> ...
- [luogu4479][BJWC2018]第k大斜率【二维偏序+二分+离散化+树状数组】
传送门 https://www.luogu.org/problemnew/show/P4479 题目描述 在平面直角坐标系上,有 n 个不同的点.任意两个不同的点确定了一条直线.请求出所有斜率存在的直 ...
- BZOJ 2738 矩阵乘法(整体二分+二维树状数组)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2738 [题目大意] 给出一个方格图,询问要求求出矩阵内第k小的元素 [题解] 我们对答 ...
随机推荐
- java数据结构和算法04(链表)
前面我们看了数组,栈和队列,大概就会这些数据结构有了一些基本的认识,首先回顾一下之前的东西: 在数组中,其实是分为有序数组和无序数组,我简单实现了无序数组,为什么呢?因为有序数组的实现就是将无序数组进 ...
- Linux 之 2>&1
我们在Linux下经常会碰到nohup command>/dev/null 2>&1 &这样形式的命令.首先我们把这条命令大概分解下首先就是一个nohup表示当前用户和系统 ...
- 后缀数组 (Suffix Array) 学习笔记
\(\\\) 定义 介绍一些写法和数组的含义,首先要知道 字典序 . \(len\):字符串长度 \(s\):字符串数组,我们的字符串存储在 \(s[0]...s[len-1]\) 中. \(suff ...
- Windows下使用JMeter
简介 Apache JMeter是100%纯java桌面应用程序,被设计用来测试C/S结构的软件(例如web应用程序).它可以被用来测试包括基于静态和动态资源程序的性能,例如静态文件,Java Ser ...
- apache反向代理配置
apache简单的反向代理配置 Proxypass /api /http://locahost:3000 反向代理-1.jpg
- java格式化sql
在日志分析中,经常会对记录的sql进行分析,所以将一整行sql格式化,进行多行缩就显得很有必要,许多数据库客户端都提供sql的格式化功能,但复杂的多层嵌套sql往往格式化的l还不够友好,所以就自己造了 ...
- 如何用 CSS 绘制各种形状
自适应的椭圆 1.自适应的椭圆 实现方式是通过border-radius这个属性:border-radius它可以单独指定水平和垂直半径.用 / 分隔这两个值.并且该属性的值不仅可以接受长度值,还能接 ...
- Node.js——Stream
介绍 文件流:我们一般对大一点的文件实现stream的方式进行操作 http:显然http.createServer创建过程中的IncomingMessage实现了可读流的接口,ServerRespo ...
- 迅为I.MX6Q开发板配不同分辨率不同尺寸液晶屏幕
I.MX6Q开发板: 核心板参数 尺寸:51mm*61mm iMX6Q四核CPU:Freescale Cortex-A9 四核 i.MX6Q,主频 1.2 GHz iMX6DL双核CPU:Freesc ...
- Importing Swift into Objective-C
Overview You can work with types declared in Swift from within the Objective-C code in your project ...