[luoguP3172] [CQOI2015]选数(递推+容斥原理)
不会莫比乌斯反演,不会递推。
但是我会看题解。
先将区间[L,H]变成(L-1,H],这样方便处理
然后求这个区间内gcd为k的方案数
就是求区间((L-1)/k,H/k]中gcd为1的方案数
有个重要的性质:如果有一些不相同的数,最大的为a,最小的为b,任意选取其中的一些数,则他们的gcd<=a-b
设f[i]表示gcd为i且所选的数不相同的方案数,但是不好求,只容易求出gcd为i的倍数g[i]的方案数
考虑容斥原理,f[i] = g[i] - f[2i] - f[3i] - ……
计算g[i]的时候要把相同的数的方案数减去,因为我们有个前提,只有数都不相同时gcd的大小才能保证
倒着递推便可以省略g数组
#include <cstdio>
#define N 100001
#define p 1000000007
#define LL long long using namespace std; LL f[N];
int n, k, l, r, flag, len; inline LL ksm(LL x, int y)
{
LL ret = 1;
for(; y; y >>= 1)
{
if(y & 1) ret = ret * x % p;
x = x * x % p;
}
return ret;
} int main()
{
int i, j, x, y;
scanf("%d %d %d %d", &n, &k, &l, &r);
if(l <= k && k <= r) flag = 1;
l--, l /= k, r /= k, len = r - l;
//转变成求区间(l, r]中gcd为1的方案数
for(i = len; i >= 1; i--)
{
x = l / i, y = r / i;
f[i] = (LL)(ksm(y - x, n) - (y - x)) % p;
for(j = i + i; j <= len; j += i) f[i] = (f[i] - f[j]) % p;
}
printf("%lld\n", (f[1] + flag + p) % p);
return 0;
}
[luoguP3172] [CQOI2015]选数(递推+容斥原理)的更多相关文章
- BZOJ 3930: [CQOI2015]选数 递推
3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...
- 3930: [CQOI2015]选数|递推|数论
题目让求从区间[L,H]中可反复的选出n个数使其gcd=k的方案数 转化一下也就是从区间[⌈Lk⌉,⌊Hk⌋]中可反复的选出n个数使其gcd=1的方案数 然后f[i]表示gcd=i的方案数.考虑去掉全 ...
- luoguP3172 [CQOI2015]选数
题意 所求即为: \(\sum\limits_{i_1=L}^{R}\sum\limits_{i_2=L}^{R}...\sum\limits_{i_k=L}^{R}[\gcd(i_1,i_2,... ...
- bzoj3930[CQOI2015]选数 容斥原理
3930: [CQOI2015]选数 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1383 Solved: 669[Submit][Status] ...
- 洛谷 [CQOI2015]选数 解题报告
[CQOI2015]选数 题目描述 我们知道,从区间\([L,H]\)(\(L\)和\(H\)为整数)中选取\(N\)个整数,总共有\((H-L+1)^N\)种方案. 小\(z\)很好奇这样选出的数的 ...
- 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演
[BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...
- [CQOI2015]选数(莫比乌斯反演,杜教筛)
[CQOI2015]选数(luogu) Description 题目描述 我们知道,从区间 [L,H](L 和 H 为整数)中选取 N 个整数,总共有 (H-L+1)^N 种方案. 小 z 很好奇这样 ...
- 【递推】BZOJ 3930: [CQOI2015]选数
Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...
- bzoj 3930: [CQOI2015]选数【递推】
妙啊 这个题一上来就想的是莫比乌斯反演: \[ f(d)=\sum_{k=1}^{\left \lceil \frac{r}{d} \right \rceil}\mu(k)(\left \lceil ...
随机推荐
- url各部分组成分解
url各部分组成分解介绍:关于url可能大家都不陌生,第一印象就是网址.但是深究起来,不少朋友并明白里面的一些细节,下面就来进行一下分解.scheme://host:port/path?query#f ...
- java 序列化Serializable 详解
Java 序列化Serializable详解(附详细例子) 1.什么是序列化和反序列化Serialization(序列化)是一种将对象以一连串的字节描述的过程:反序列化deserialization是 ...
- 通过 Azure IoT 中心实现互联网设备数据的可视化分析
本课程主要介绍了如何 在Azure 平台上借助 Azure IoT 中心, Azure 流分析,Web 应用, Azure 数据库等服务快速构建收集处理并可视化来自设备的数据流的应用, 包括项目背景介 ...
- strophe.js 插件 XMPP openfire
参考资料:http://strophe.im/strophejs/ https://github.com/strophe/strophejs-plugins http://amazeui.org/ 最 ...
- caffe的pad的报错
CHECK((!conv_param.has_stride() && conv_param.has_stride_h() && conv_param.has_strid ...
- iis隐藏index.php
1.先安装微软的URL Rewrite模块 网址是https://www.iis.net/downloads/microsoft/url-rewrite#additionalDownloads 安装完 ...
- Python基础篇 -- 字典
字典 dict. 以 {} 表示, 每一项用逗号隔开, 内部元素用 key: value的形式来保存数据 例子: dict.{"JJ":"林俊杰"," ...
- 线程调度的问题:Lock Convoy(锁封护)与Priority Inversion(优先级反转)
Lock Convoy(锁封护) [1]Lock Convoy是在多线程并发环境下由于锁的使用而引起的性能退化问题.当多个相同优先级的线程频繁地争抢同一个锁时可能会引起lock convoy问题,一般 ...
- 【DB_MySQL】查询语句中各子句的执行顺序
1. FROM 指明查询来源 2. WHERE筛选元组 3. GROUP BY进行分组 4. HAVING 筛选分组 5. SELECT 投影出指定的字段列 6. ORDER BY 对结果集排序 7. ...
- mysql存储过程详解及基于PHP使用实例
mysql存储过程详解 1. 存储过程简介 我们常用的操作数据库语言SQL语句在执行的时候需要要先编译,然后执行,而存储过程(Stored Procedure)是一组为了完成特定功能的S ...