传送门

不会莫比乌斯反演,不会递推。

但是我会看题解。

先将区间[L,H]变成(L-1,H],这样方便处理

然后求这个区间内gcd为k的方案数

就是求区间((L-1)/k,H/k]中gcd为1的方案数

有个重要的性质:如果有一些不相同的数,最大的为a,最小的为b,任意选取其中的一些数,则他们的gcd<=a-b

设f[i]表示gcd为i且所选的数不相同的方案数,但是不好求,只容易求出gcd为i的倍数g[i]的方案数

考虑容斥原理,f[i] = g[i] - f[2i] - f[3i] - ……

计算g[i]的时候要把相同的数的方案数减去,因为我们有个前提,只有数都不相同时gcd的大小才能保证

倒着递推便可以省略g数组

#include <cstdio>
#define N 100001
#define p 1000000007
#define LL long long using namespace std; LL f[N];
int n, k, l, r, flag, len; inline LL ksm(LL x, int y)
{
LL ret = 1;
for(; y; y >>= 1)
{
if(y & 1) ret = ret * x % p;
x = x * x % p;
}
return ret;
} int main()
{
int i, j, x, y;
scanf("%d %d %d %d", &n, &k, &l, &r);
if(l <= k && k <= r) flag = 1;
l--, l /= k, r /= k, len = r - l;
//转变成求区间(l, r]中gcd为1的方案数
for(i = len; i >= 1; i--)
{
x = l / i, y = r / i;
f[i] = (LL)(ksm(y - x, n) - (y - x)) % p;
for(j = i + i; j <= len; j += i) f[i] = (f[i] - f[j]) % p;
}
printf("%lld\n", (f[1] + flag + p) % p);
return 0;
}

  

[luoguP3172] [CQOI2015]选数(递推+容斥原理)的更多相关文章

  1. BZOJ 3930: [CQOI2015]选数 递推

    3930: [CQOI2015]选数 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pro ...

  2. 3930: [CQOI2015]选数|递推|数论

    题目让求从区间[L,H]中可反复的选出n个数使其gcd=k的方案数 转化一下也就是从区间[⌈Lk⌉,⌊Hk⌋]中可反复的选出n个数使其gcd=1的方案数 然后f[i]表示gcd=i的方案数.考虑去掉全 ...

  3. luoguP3172 [CQOI2015]选数

    题意 所求即为: \(\sum\limits_{i_1=L}^{R}\sum\limits_{i_2=L}^{R}...\sum\limits_{i_k=L}^{R}[\gcd(i_1,i_2,... ...

  4. bzoj3930[CQOI2015]选数 容斥原理

    3930: [CQOI2015]选数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1383  Solved: 669[Submit][Status] ...

  5. 洛谷 [CQOI2015]选数 解题报告

    [CQOI2015]选数 题目描述 我们知道,从区间\([L,H]\)(\(L\)和\(H\)为整数)中选取\(N\)个整数,总共有\((H-L+1)^N\)种方案. 小\(z\)很好奇这样选出的数的 ...

  6. 【BZOJ3930】[CQOI2015]选数 莫比乌斯反演

    [BZOJ3930][CQOI2015]选数 Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律 ...

  7. [CQOI2015]选数(莫比乌斯反演,杜教筛)

    [CQOI2015]选数(luogu) Description 题目描述 我们知道,从区间 [L,H](L 和 H 为整数)中选取 N 个整数,总共有 (H-L+1)^N 种方案. 小 z 很好奇这样 ...

  8. 【递推】BZOJ 3930: [CQOI2015]选数

    Description 我们知道,从区间[L,H](L和H为整数)中选取N个整数,总共有(H-L+1)^N种方案.小z很好奇这样选出的数的最大公约数的规律,他决定对每种方案选出的N个整数都求一次最大公 ...

  9. bzoj 3930: [CQOI2015]选数【递推】

    妙啊 这个题一上来就想的是莫比乌斯反演: \[ f(d)=\sum_{k=1}^{\left \lceil \frac{r}{d} \right \rceil}\mu(k)(\left \lceil ...

随机推荐

  1. 基于H5+ API手机相册图片压缩上传

    // 母函数 function App(){} /** * 图片压缩,默认同比例压缩 * @param {Object} path * pc端传入的路径可以为相对路径,但是在移动端上必须传入的路径是照 ...

  2. sqlserver中drop、truncate和delete语句的用法

    虽然小编不建议大家去用命令删除数据库表中的东西,但是这些删除命令总有用的着的地方. 说到删除表数据的关键字,大家记得最多的可能就是delete了 然而我们做数据库开发,读取数据库数据.对另外的两兄弟用 ...

  3. 【GIMP学习】抠图方法二则

    之前抠图都比较二,懒人我尝试过在线抠图软件.以及在线PS简易版,真的都很不好用,前者简单粗暴,后者我遇到各种储存不能的bug. 在ubuntu的环境下有一个功能可以和PS相媲美的功能强大图片处理软件G ...

  4. JS对输入判断变化屏蔽中文输入法输入时连续触发事件的方法

    代码如下: //智能搜索提示 IntelligenceSearch: function IntelligenceSearch() { $('#keyWord').on('input', functio ...

  5. spring (由Rod Johnson创建的一个开源框架)

    你可能正在想“Spring不过是另外一个的framework”.当已经有许多开放源代码(和专有)J2EEframework时,我们为什么还需要Spring Framework? Spring是独特的, ...

  6. 转载:使用Auto Layout中的VFL(Visual format language)--代码实现自动布局

    本文将通过简单的UI来说明如何用VFL来实现自动布局.在自动布局的时候避免不了使用代码来加以优化以及根据内容来实现不同的UI. 一:API介绍 NSLayoutConstraint API 1 2 3 ...

  7. iview table里面 插入下拉列表组件(自定义组件)一定要加key,不加key,table开始会加载所有数据,然后再从第2页点回第一页,就会走onChange事件,混乱的逻辑,切记加:key

    iview table里面 插入下拉列表组件(自定义组件)一定要加key,不加key,table开始会加载所有数据,然后再从第2页点回第一页,就会走onChange事件,混乱的逻辑,切记加:key 关 ...

  8. httpClient类

    @SuppressWarnings("finally") public JSONObject doPost(String url, String parms){ if (" ...

  9. OmniFocus

    褪墨・时间管理 “把所有事情都从你的脑袋里弄出来.在事情出现就做好相关行动的一系列决定,而不是在事情爆发的时候.以合适的类别组织好你的项目的各种提醒以及下一步行动.保持你的系统更新和完整,及时进行回顾 ...

  10. iOS UIView中的坐标转换convertPoint --- iOS开发系列 ---项目中成长的知识六

    如果你的UITableViewCell里面有一个Button需要响应事件,你会怎么做? 在Controller中使用 button父类的父类?   例如:UITableViewCell *parent ...