【Nginx】epoll及内核源码详解
内核源码: https://www.nowcoder.com/discuss/26226?type=0&order=0&pos=21&page=1
epoll流程:
首先调用epoll_create建立一个epoll对象,epoll_ctl可以操作上面建立的epoll对象,例如,将刚建立的socket加入到epoll中让其监控,或者把 epoll正在监控的某个socket句柄移出epoll,不再监控它等等。epoll_wait在调用时,在给定的timeout时间内,当在监控的所有句柄中有事件发生时,就返回用户态的进程。
当一个进程调用epoll_create方法时,linux内核会创建一个eventpoll结构体,每个epoll对象都有一个独立的eventpoll结构体,这个结构体会在内核空间中创造独立的内存,用于存储使用epoll_ctl方法向epoll对象中添加进来的事件。这样,重复的事件就可以通过红黑树高效地识别出来。
在epoll中,对于每一个事件都会建立一个epitem结构体。epoll还维护了一个双链表,用于存储发生的事件。当epoll_wait调用时,仅仅观察这个链表中有没有数据即eptime项即可。有数据就返回,没有数据就sleep,等到timeout时间到后即使链表没数据也返回。
准备就绪链表的维护:
当我们执行epoll_ctl时,除了把socket放到epoll文件系统里epoll对象对应的红黑树上之外,还会给内核中断处理程序注册一个回调函数,告诉内核,如果这个句柄的中断到了,就把它放到准备就绪list链表里。
执行epoll_create时,创建了红黑树和就绪链表(eventpoll结构体成员),执行epoll_ctl时,如果增加socket句柄,则检查在红黑树中是否存在,存在立即返回,不存在则添加到树干上,然后向内核注册回调函数,用于当中断事件来临时向准备就绪链表中插入数据。执行epoll_wait时立刻返回准备就绪链表里的数据即可。
1. int epoll_create(int size);
创建一个epoll的句柄。自从linux2.6.8之后,size参数是被忽略的。需要注意的是,当创建好epoll句柄后,它就是会占用一个fd值,在linux下如果查看/proc/进程id/fd/,是能够看到这个fd的,所以在使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽。
2. int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
epoll的事件注册函数
第一个参数是epoll_create()的返回值。
第二个参数表示动作,用三个宏来表示:
EPOLL_CTL_ADD:注册新的fd到epfd中;
EPOLL_CTL_MOD:修改已经注册的fd的监听事件;
EPOLL_CTL_DEL:从epfd中删除一个fd;
第三个参数是需要监听的fd。
第四个参数是告诉内核需要监听什么事,event.data.fd就是第三个参数fd,event.events是该fd上需要监听的事件类型,struct epoll_event结构如下
//保存触发事件的某个文件描述符相关的数据(与具体使用方式有关) typedef union epoll_data {
void *ptr;
int fd;//需要监听的文件描述符
__uint32_t u32;
__uint64_t u64;
} epoll_data_t;
//感兴趣的事件和被触发的事件
struct epoll_event {
__uint32_t events; /* Epoll events *///需要监听的文件描述符的事件类型
epoll_data_t data; /* User data variable */
};
events可以是以下几个宏的集合:
EPOLLIN :表示对应的文件描述符可以读(包括对端SOCKET正常关闭);
EPOLLOUT:表示对应的文件描述符可以写;
EPOLLPRI:表示对应的文件描述符有紧急的数据可读(这里应该表示有带外数据到来);
EPOLLERR:表示对应的文件描述符发生错误;
EPOLLHUP:表示对应的文件描述符被挂断;
EPOLLET: 将EPOLL设为边缘触发(Edge Triggered)模式,这是相对于水平触发(Level Triggered)来说的。
EPOLLONESHOT:只监听一次事件,当监听完这次事件之后,如果还需要继续监听这个socket的话,需要再次把这个socket加入到EPOLL队列里
3. int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
收集在epoll监控的事件中已经发生的事件。参数events是分配好的epoll_event结构体数组,epoll将会把发生的事件赋值到events数组中(events不可以是空指针,内核只负责把数据复制到这个events数组中,不会去帮助我们在用户态中分配内存)。maxevents告之内核这个events有多大,这个 maxevents的值不能大于创建epoll_create()时的size,参数timeout是超时时间(毫秒,0会立即返回,-1是阻塞调用)。如果函数调用成功,返回对应I/O上已准备好的文件描述符数目,如返回0表示已超时。
epoll工作原理:
epoll同样只告知那些就绪的文件描述符,而且当我们调用epoll_wait()获得就绪文件描述符时,返回的不是实际的描述符,而是一个代表就绪描述符数量的值,你只需要去epoll指定的一个数组中依次取得相应数量的文件描述符即可,这里也使用了内存映射(mmap)技术,这样便彻底省掉了这些文件描述符在系统调用时复制的开销。(我的理解:内核调用epoll_wait时,把就绪的fd及事件赋值到events数组中,用户在用户态中可以直接使用events数组,所以这其中用到mmap技术)
另一个本质的改进在于epoll采用基于事件的就绪通知方式(每个socket上注册一个回调函数)。在select/poll中,进程只有在调用一定的方法后,内核才对所有监视的文件描述符进行扫描,而epoll事先通过epoll_ctl()来注册一个文件描述符,一旦基于某个文件描述符就绪时,内核会采用类似callback的回调机制,迅速激活这个文件描述符,当进程调用epoll_wait()时便得到通知。
Epoll的2种工作方式-水平触发(LT)和边缘触发(ET):
epoll对文件描述符的操作有两种模式:LT(level trigger)和ET(edge trigger)。LT模式是默认模式
ET模式在很大程度上减少了epoll事件被重复触发的次数,因此效率要比LT模式高。epoll工作在ET模式的时候,必须使用非阻塞套接口,以避免由于一个文件句柄的阻塞读/阻塞写操作把处理多个文件描述符的任务饿死(在while循环中调用read、write、accept,若是阻塞套接字,当资源不够时,进程会被阻塞,则其他准备就绪的文件描述符得不到处理,如果是非阻塞套接字,当资源不够时,上述系统调用返回-1,同时将errno设置为EAGAIN)
LT模式下开发基于epoll的应用要简单些,不太容易出错。而在ET模式下事件发生时,如果没有彻底地将缓冲区数据处理完,则会导致缓冲区中的用户请求得不到响应。
epoll相比select/poll的优点:
1.epoll支持一个进程打开大数目的socket描述符(FD),select中一个进程打开的fd数目是有限制的,传统的apache方案是选择多进程来解决,但是创建进程是有代价的,而且进程间数据同步远比不上线程间同步的高效
2.epoll的IO效率不随FD数目增加而线性下降,select/poll每次调用都会线性扫描所有的集合,导致效率呈线性下降,而epoll在每个fd上面有callback函数,当监听的事件发生时,callback函数会自动将数据添加到就绪链表中(基于事件的就绪通知方式)。
3.epoll使用mmap加速内核与用户空间的消息传递,通过内核与用户空间mmap同一块内存实现(我的理解:epoll_wait中events参数,在内核态下赋值,用户态可以直接使用)
4.每次调用select,都需要把fd集合从用户态拷贝到内核态,而每次调用epoll_ctl只是在往内核的数据结构里塞入新的socket句柄
epoll的使用方法:
首先通过epoll_create(int maxfds)来创建一个epoll的句柄。这个函数会返回一个新的epoll句柄,之后的所有操作将通过这个句柄来进行操作。在用完之后,记得用close()来关闭这个创建出来的epoll句柄,因为epoll对象占用一个fd值。
之后在你的网络主循环里面,每一帧的调用epoll_wait(int epfd, epoll_event events, int max events, int timeout)来查询所有的网络接口,看哪一个可以读,哪一个可以写了。基本的语法为:nfds = epoll_wait(kdpfd, events, maxevents, -1);
其中kdpfd为用epoll_create创建之后的句柄,events是一个epoll_event*的指针,当epoll_wait这个函数操作成功之后,epoll_events里面将储存所有的读写事件。max_events是当前需要监听的所有socket句柄数。最后一个timeout是 epoll_wait的超时,为0的时候表示马上返回,为-1的时候表示一直等下去,直到有事件返回,为任意正整数的时候表示等这么长的时间,如果一直没有事件,则返回。一般如果网络主循环是单独的线程的话,可以用-1来等(即阻塞调用epoll_wait),这样可以保证一些效率,如果是和主逻辑在同一个线程的话,则可以用0来保证主循环的效率。epoll_wait返回之后应该是一个循环,遍历所有的事件
for( ; ; )
{
nfds = epoll_wait(epfd,events,,);
for(i=;i<nfds;++i)
{
if(events[i].data.fd==listenfd) //有新的连接
{
connfd = accept(listenfd,(sockaddr *)&clientaddr, &clilen); //accept这个连接
ev.data.fd=connfd;
ev.events=EPOLLIN|EPOLLET;
epoll_ctl(epfd,EPOLL_CTL_ADD,connfd,&ev); //将新的fd添加到epoll的监听队列中
} else if( events[i].events&EPOLLIN ) //接收到数据,读socket
{
n = read(sockfd, line, MAXLINE)) < //读
ev.data.ptr = md; //md为自定义类型,添加数据
ev.events=EPOLLOUT|EPOLLET;
epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev);//修改标识符,等待下一个循环时发送数据,异步处理的精髓
}
else if(events[i].events&EPOLLOUT) //有数据待发送,写socket
{
struct myepoll_data* md = (myepoll_data*)events[i].data.ptr; //取数据
sockfd = md->fd;
send( sockfd, md->ptr, strlen((char*)md->ptr), ); //发送数据
ev.data.fd=sockfd;
ev.events=EPOLLIN|EPOLLET;
epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev); //修改标识符,等待下一个循环时接收数据
}
else
{
//其他的处理
}
}
}
/* 171 * This structure is stored inside the "private_data" member of the file
172 * structure and represents the main data structure for the eventpoll
173 * interface.
174 */struct eventpoll { /* Protect the access to this structure */ spinlock_t lock; /* 180 * This mutex is used to ensure that files are not removed 181 * while epoll is using them. This is held during the event 182 * collection loop, the file cleanup path, the epoll file exit 183 * code and the ctl operations. 184 */ struct mutex mtx; /* Wait queue used by sys_epoll_wait() */ wait_queue_head_t wq; /* Wait queue used by file->poll() */ wait_queue_head_t poll_wait; /* List of ready file descriptors */ struct list_head rdllist; /* RB tree root used to store monitored fd structs */ struct rb_root rbr;//红黑树根节点,这棵树存储着所有添加到epoll中的事件,也就是这个epoll监控的事件 /*
200 * This is a single linked list that chains all the "struct epitem" that
201 * happened while transferring ready events to userspace w/out
202 * holding ->lock.
203 */
struct epitem *ovflist; /* wakeup_source used when ep_scan_ready_list is running */
struct wakeup_source *ws; /* The user that created the eventpoll descriptor */
struct user_struct *user; struct file *file; /* used to optimize loop detection check */
int visited;
struct list_head visited_list_link;//双向链表中保存着将要通过epoll_wait返回给用户的、满足条件的事件
}; /*
130 * Each file descriptor added to the eventpoll interface will
131 * have an entry of this type linked to the "rbr" RB tree.
132 * Avoid increasing the size of this struct, there can be many thousands
133 * of these on a server and we do not want this to take another cache line.
134 */struct epitem {
/* RB tree node used to link this structure to the eventpoll RB tree */
struct rb_node rbn; /* List header used to link this structure to the eventpoll ready list */
struct list_head rdllink; /*
143 * Works together "struct eventpoll"->ovflist in keeping the
144 * single linked chain of items.
145 */
struct epitem *next; /* The file descriptor information this item refers to */
struct epoll_filefd ffd; /* Number of active wait queue attached to poll operations */
int nwait; /* List containing poll wait queues */
struct list_head pwqlist; /* The "container" of this item */
struct eventpoll *ep; /* List header used to link this item to the "struct file" items list */
struct list_head fllink; /* wakeup_source used when EPOLLWAKEUP is set */
struct wakeup_source __rcu *ws; /* The structure that describe the interested events and the source fd */
struct epoll_event event;
};
【Nginx】epoll及内核源码详解的更多相关文章
- [转]Linux内核源码详解--iostat
Linux内核源码详解——命令篇之iostat 转自:http://www.cnblogs.com/york-hust/p/4846497.html 本文主要分析了Linux的iostat命令的源码, ...
- epoll内核源码详解(转 作者:赛罗·奥特曼 来源:牛客网)
发现自己发的一篇面经后,很多小伙伴向我索要epoll的内核源码实现,那我就在牛客网发下这源码还有自己总结的流程. 另外 网上很多博客说epoll使用了共享内存,这个是完全错误的 ,可以阅读源码,会发现 ...
- Linux内核源码详解——命令篇之iostat[zz]
本文主要分析了Linux的iostat命令的源码,iostat的主要功能见博客:性能测试进阶指南——基础篇之磁盘IO iostat源码共563行,应该算是Linux系统命令代码比较少的了.源代码中主要 ...
- RocketMQ源码详解 | Broker篇 · 其一:线程模型与接收链路
概述 在上一节 RocketMQ源码详解 | Producer篇 · 其二:消息组成.发送链路 中,我们终于将消息发送出了 Producer,在短暂的 tcp 握手后,很快它就会进入目的 Broker ...
- RocketMQ源码详解 | Broker篇 · 其五:高可用之主从架构
概述 对于一个消息中间件来讲,高可用功能是极其重要的,RocketMQ 当然也具有其对应的高可用方案. 在 RocketMQ 中,有主从架构和 Dledger 两种高可用方案: 第一种通过主 Brok ...
- Spark Streaming揭秘 Day25 StreamingContext和JobScheduler启动源码详解
Spark Streaming揭秘 Day25 StreamingContext和JobScheduler启动源码详解 今天主要理一下StreamingContext的启动过程,其中最为重要的就是Jo ...
- spring事务详解(三)源码详解
系列目录 spring事务详解(一)初探事务 spring事务详解(二)简单样例 spring事务详解(三)源码详解 spring事务详解(四)测试验证 spring事务详解(五)总结提高 一.引子 ...
- 条件随机场之CRF++源码详解-预测
这篇文章主要讲解CRF++实现预测的过程,预测的算法以及代码实现相对来说比较简单,所以这篇文章理解起来也会比上一篇条件随机场训练的内容要容易. 预测 上一篇条件随机场训练的源码详解中,有一个地方并没有 ...
- saltstack源码详解一
目录 初识源码流程 入口 1.grains.items 2.pillar.items 2/3: 是否可以用python脚本实现 总结pillar源码分析: @(python之路)[saltstack源 ...
随机推荐
- AIX RAC 安装失败完全卸载
1,删除软件安装目录 rm -rf /u01/app 2,删除以下目录内容 rm -rf/tmp/.oracle rm -rf/tmp/* rm -rf/tmp/ora* rm -rf/var/tmp ...
- 模态对话框与非模态对话框(modeless)
对话框有两种创建方式:DoModal和Creat. 其中DoModal创建的是模态的对话框,而Creat创建的是非模态的对话框下面总结下他们的不同. 对于模态的对话框,在该对话框被关闭前,用户将不能在 ...
- Js获取操作系统版本 && 获得浏览器版本
//利用原生Js获取操作系统版本function getOS() { var sUserAgent = navigator.userAgent; var isWin = (navigator.plat ...
- h5开发app,移动端 click 事件响应缓慢的解决方案
造成点击缓慢的原因 从点击屏幕上的元素到触发元素的 click 事件,移动浏览器会有大约 300 毫秒的等待时间.为什么这么设计呢? 因为它想看看你是不是要进行双击(double tap)操作. 使用 ...
- hdfs深入:06、hdfs的写入过程
7.HDFS的文件写入过程 详细步骤解析: 1. client发起文件上传请求,通过RPC与NameNode建立通讯,NameNode检查目标文件是否已存在,父目录是否存在,返回是否可以上传: 2. ...
- 用node写个简单的静态服务器
直接上代码吧,我把它命名为 app.js, 只要在该文件所在目录下,控制台运行 node app.js 即可启动一个本地服务器了. /** * 服务器 * Author jervy * Date */ ...
- <Spring Cloud>入门一 Eureka Server
1.搭建父工程 主要是添加版本依赖,此处版本是: spring-boot : 2.0.8.RELEASE spring-cloud : Finchley.SR2 <?xml version=& ...
- Linux 关于umount
场景:linux下挂载过去的代码目录编译失败.怀疑本地磁盘空间不足问题导致.解决方法:卸载重新挂载. 操作:卸载时报错: 解决方法: 1.umount, 老是提示:device is busy, 服务 ...
- linux arp-显示和修改IP到MAC转换表
博主推荐:更多网络测试相关命令关注 网络测试 收藏linux命令大全 arp命令用于操作主机的arp缓冲区,它可以显示arp缓冲区中的所有条目.删除指定的条目或者添加静态的ip地址与MAC地址对应关 ...
- (八)python3 迭代
迭代:如果给定一个 list 或 tuple,我们可以通过 for 循环来遍历这个 list 或tuple,这种遍历我们称为迭代(Iteration) 字典: >>> d = {'a ...