BZOJ1592: [Usaco2008 Feb]Making the Grade 路面修整
n<=2000个数,把它修改成不上升或不下降序列所要改变的数值总共最小是多少
yy一下可得最后改成的数值肯定是原数组数值中的某一个
感觉一下,相邻两个数如果有冲突要改,那肯定把他们改成两者之一的数才较好,具体证明不会。。
f(i,j)--前i个数,最后一个改为第j小(第j大)的数,答案是多少
f(i,j)=min(f(i-1,k))+abs(a[i]-b[j]),其中1<=k<=j,b[j]为a数组排序后的第j小(大)的数
两次dp即可
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<cmath>
//#include<iostream>
using namespace std; int n;
#define maxn 2017
int f[maxn][maxn];
int a[maxn],b[maxn];
const int inf=0x7fffffff;
int main()
{
scanf("%d",&n);
for (int i=;i<=n;i++)
{
scanf("%d",&a[i]);
b[i]=a[i];
}
int ans=inf;
sort(b+,b++n);
memset(f[],,sizeof(f[]));
for (int i=;i<=n;i++)
{
f[i][]=f[i-][]+fabs(a[i]-b[]);
int minf=f[i-][];
for (int j=;j<=n;j++)
{
minf=min(minf,f[i-][j]);
f[i][j]=minf+fabs(a[i]-b[j]);
}
}
for (int i=;i<=n;i++) ans=min(ans,f[n][i]);
for (int i=;i<=n/;i++) {int t=b[i];b[i]=b[n-i+];b[n-i+]=t;}
for (int i=;i<=n;i++)
{
f[i][]=f[i-][]+fabs(a[i]-b[]);
int minf=f[i-][];
for (int j=;j<=n;j++)
{
minf=min(minf,f[i-][j]);
f[i][j]=minf+fabs(a[i]-b[j]);
}
}
for (int i=;i<=n;i++) ans=min(ans,f[n][i]);
printf("%d\n",ans);
return ;
}
这题5月份写的,开始不会;6月份考原题,不会;7月份考加强版,把a[i]换成a[i]-i即可,又不会。
很好。
BZOJ1592: [Usaco2008 Feb]Making the Grade 路面修整的更多相关文章
- 【贪心】bzoj1592: [Usaco2008 Feb]Making the Grade 路面修整
贪心的经典套路:替换思想:有点抽象 Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也 就是说,高度上升与高度下降的路段不能 ...
- [BZOJ1592] [Usaco2008 Feb]Making the Grade 路面修整(DP)
传送门 有个结论,每一个位置修改高度后的数,一定是原来在这个数列中出现过的数 因为最终结果要么不递增要么不递减, 不递增的话, 如果x1 >= x2那么不用动,如果x1 < x2,把x1变 ...
- BZOJ 1592: [Usaco2008 Feb]Making the Grade 路面修整( dp )
最优的做法最后路面的高度一定是原来某一路面的高度. dp(x, t) = min{ dp(x - 1, k) } + | H[x] - h(t) | ( 1 <= k <= t ) 表示前 ...
- 1592: [Usaco2008 Feb]Making the Grade 路面修整
1592: [Usaco2008 Feb]Making the Grade 路面修整 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 428 Solv ...
- 2014.6.14模拟赛【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整
Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了 ...
- BZOJ1592 POJ3666 [Usaco2008 Feb]Making the Grade 路面修整 左偏树 可并堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - POJ3666 题目传送门 - BZOJ1592 题意概括 整条路被分成了N段,N个整数A_1, ... , ...
- 【bzoj1592】[Usaco2008 Feb]Making the Grade 路面修整
FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了N段,N个整数A_1, ...
- BZOJ 1592: [Usaco2008 Feb]Making the Grade 路面修整
Description FJ打算好好修一下农场中某条凹凸不平的土路.按奶牛们的要求,修好后的路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能同时出现在修好的路中. 整条路被分成了 ...
- 【BZOJ 1592】[Usaco2008 Feb]Making the Grade 路面修整 dp优化之转移变状态
我们感性可证离散(不离散没法做),于是我们就有了状态转移的思路(我们只考虑单不减另一个同理),f[i][j]到了第i块高度为j的最小话费,于是我们就可以发现f[i][j]=Min(f[i-1][k]) ...
随机推荐
- [BZOJ1040][ZJOI2008]骑士 基环树DP
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1040 题目给出了$n$个点和$n$条无向边,即一棵基环树或者基环树森林. 如果题目给的关系 ...
- 《Python基础教程》 读书笔记 第六章 抽象 函数 参数
6.1创建函数 函数是可以调用(可能包含参数,也就是放在圆括号中的值),它执行某种行为并且返回一个值.一般来说,内建的callable函数可以用来判断函数是否可调用: >>> x=1 ...
- qt5.8使用qwebenginview注意事项
环境qt5.8,vs2015(ui.webview必须要先show出来,不然加载不成功) 1.项目属性,c/c++,常规,附加包含目录,新增: $(QTDIR)\include\QtWebChanne ...
- WEB前端JS与UI框架
前端Js框架汇总 概述: 有些日子没有正襟危坐写博客了,互联网飞速发展的时代,技术更新迭代的速度也在加快.看着Java.Js.Swift在各领域心花路放,也是煞是羡慕.寻了寻.net的消息,也是振奋人 ...
- (转)SpringMVC学习(七)——Controller类的方法返回值
http://blog.csdn.net/yerenyuan_pku/article/details/72511844 本文所有案例代码的编写均建立在前文SpringMVC学习(六)——SpringM ...
- 使用sersync实现实时同步实战
场景需求: 应用程序会在机器192.168.2.2 /usr/local/news目录中生成一些数据文件,现在需要实时同步到主机192.168.3.3/usr/local/www/cn/news中,同 ...
- PHP23 AJAX分页
模型代码设计 以留言信息管理为例. 获取根据条件查询记录总数和分页数据. <?php namespace application\admin\models; use core\mybase\Mo ...
- JavaSE-28 hashCode()方法、equals()方法和==相关概念
概述 Java中,Object类是所有类的基类:如果一个类没有明确继承其他已定义的类,则默认继承Object类. Object类提供了以下方法,对于其他方法,请参考前期专题描述. hashCode() ...
- BZOJ1232: [Usaco2008Nov]安慰奶牛cheer(最小生成树)
题意:给一个图 需要找到一个子图使得所有点都连通 然后再选择一个点做为起点 走到每个点并回到起点 每条边,每个点被经过一次就要花费一次边权.点权 题解:肯定是找一颗最小生成树嘛 然后惊奇的发现 任意选 ...
- 在已有的mysql表中添加自增字段
现有数据表xiami,建表的时候忘记添加自增字段,现需要添加自增字段 第一步:添加字段 alter table xiami add id int; 第二步:修改字段 alter tabel xiami ...