[题目链接]

https://www.lydsy.com/JudgeOnline/problem.php?id=1969

[算法]

首先离线 , 将删边操作转化为加边操作

不妨首先将这张图按边-双连通分量(e-DCC)缩点 , 缩点后形成了一棵树

树链剖分 + 线段树即可

时间复杂度 : O(NlogN ^ 2)

[代码]

#include<bits/stdc++.h>
using namespace std;
#define MAXN 200010 struct query
{
int type , u , v;
} que[MAXN];
struct edge
{
int to , nxt;
} e[MAXN << ] , ec[MAXN << ]; int n , m , timer , cnt , tot , q , len;
int head[MAXN] , chead[MAXN] , low[MAXN] , dfn[MAXN] , belong[MAXN] ,
size[MAXN] , fa[MAXN] , son[MAXN] , top[MAXN] , depth[MAXN] , u[MAXN] , v[MAXN] , ans[MAXN];
map< pair<int , int> , int> mp;
bool is_bridge[MAXN << ] , des[MAXN << ]; template <typename T> inline void chkmax(T &x,T y) { x = max(x,y); }
template <typename T> inline void chkmin(T &x,T y) { x = min(x,y); }
template <typename T> inline void read(T &x)
{
T f = ; x = ;
char c = getchar();
for (; !isdigit(c); c = getchar()) if (c == '-') f = -f;
for (; isdigit(c); c = getchar()) x = (x << ) + (x << ) + c - '';
x *= f;
}
struct Segment_Tree
{
struct Node
{
int l , r , sum;
int tag;
} Tree[MAXN << ];
inline void build(int index , int l , int r)
{
Tree[index].l = l;
Tree[index].r = r;
Tree[index].tag = ;
if (l == r)
{
if (l != ) Tree[index].sum = ;
return;
}
int mid = (l + r) >> ;
build(index << , l , mid);
build(index << | , mid + , r);
update(index);
}
inline void pushdown(int index)
{
Tree[index << ].sum = Tree[index << | ].sum = ;
Tree[index << ].tag = Tree[index << | ].tag = ;
Tree[index].tag = ;
}
inline void update(int index)
{
Tree[index].sum = Tree[index << ].sum + Tree[index << | ].sum;
}
inline void modify(int index , int l , int r)
{
if (Tree[index].l == l && Tree[index].r == r)
{
Tree[index].sum = ;
Tree[index].tag = ;
return;
}
if (Tree[index].tag) pushdown(index);
int mid = (Tree[index].l + Tree[index].r) >> ;
if (mid >= r) modify(index << , l , r);
else if (mid + <= l) modify(index << | , l , r);
else
{
modify(index << , l , mid);
modify(index << | , mid + , r);
}
update(index);
}
inline int query(int index , int l , int r)
{
if (Tree[index].l == l && Tree[index].r == r)
return Tree[index].sum;
if (Tree[index].tag) pushdown(index);
int mid = (Tree[index].l + Tree[index].r) >> ;
if (mid >= r) return query(index << , l , r);
else if (mid + <= l) return query(index << | , l , r);
else return query(index << , l , mid) + query(index << | , mid + , r);
}
} SGT;
inline void addedge(int u , int v)
{
++tot;
e[tot] = (edge){v , head[u]};
head[u] = tot;
}
inline void addcedge(int u , int v)
{
++tot;
ec[tot] = (edge){v , chead[u]};
chead[u] = tot;
}
inline void tarjan(int u , int t)
{
low[u] = dfn[u] = ++timer;
for (int i = head[u]; i; i = e[i].nxt)
{
int v = e[i].to;
if (!dfn[v])
{
tarjan(v , i);
chkmin(low[u] , low[v]);
if (low[v] > dfn[u])
is_bridge[i] = is_bridge[i ^ ] = true;
} else if (i != (t ^ )) chkmin(low[u] , dfn[v]);
}
}
inline void dfs(int u , int id)
{
belong[u] = id;
for (int i = head[u]; i; i = e[i].nxt)
{
int v = e[i].to;
if (!belong[v] && !is_bridge[i]) dfs(v , id);
}
}
inline void dfs1(int u)
{
size[u] = ;
son[u] = ;
for (int i = chead[u]; i; i = ec[i].nxt)
{
int v = ec[i].to;
if (v == fa[u]) continue;
depth[v] = depth[u] + ;
fa[v] = u;
dfs1(v);
size[u] += size[v];
if (son[u] == || size[v] > size[son[u]]) son[u] = v;
}
}
inline void dfs2(int u , int tp)
{
dfn[u] = ++timer;
top[u] = tp;
if (son[u]) dfs2(son[u] , tp);
for (int i = chead[u]; i; i = ec[i].nxt)
{
int v = ec[i].to;
if (v == fa[u] || v == son[u]) continue;
dfs2(v , v);
}
}
inline void modify(int u , int v)
{
u = belong[u] , v = belong[v];
int tu = top[u] , tv = top[v];
while (tu != tv)
{
if (depth[tu] > depth[tv])
{
swap(u , v);
swap(tu , tv);
}
SGT.modify( , dfn[tv] , dfn[v]);
v = fa[tv]; tv = top[v];
}
if (dfn[u] > dfn[v]) swap(u , v);
if (dfn[u] + <= dfn[v]) SGT.modify( , dfn[u] + , dfn[v]);
}
inline int query(int u , int v)
{
u = belong[u] , v = belong[v];
int tu = top[u] , tv = top[v];
int ret = ;
while (tu != tv)
{
if (depth[tu] > depth[tv])
{
swap(u , v);
swap(tu , tv);
}
ret += SGT.query( , dfn[tv] , dfn[v]);
v = fa[tv]; tv = top[v];
}
if (dfn[u] > dfn[v]) swap(u , v);
if (dfn[u] + <= dfn[v]) ret += SGT.query( , dfn[u] + , dfn[v]);
return ret;
} int main()
{ read(n); read(m);
for (int i = ; i <= m; i++)
{
read(u[i]);
read(v[i]);
mp[make_pair(u[i] , v[i])] = mp[make_pair(v[i] , u[i])] = i;
}
while (true)
{
int C , A , B;
read(C);
if (C == -) break;
read(A); read(B);
if (C == ) des[mp[make_pair(A , B)]] = true;
que[++q].type = C; que[q].u = A; que[q].v = B;
}
tot = ;
for (int i = ; i <= m; i++)
{
if (!des[i])
{
addedge(u[i] , v[i]);
addedge(v[i] , u[i]);
}
}
for (int i = ; i <= n; i++)
if (!dfn[i]) tarjan(i , );
for (int i = ; i <= n; i++)
if (!belong[i]) dfs(i , ++cnt);
tot = ;
for (int i = ; i <= m; i++)
{
if (des[i]) continue;
if (belong[u[i]] != belong[v[i]])
{
addcedge(belong[u[i]] , belong[v[i]]);
addcedge(belong[v[i]] , belong[u[i]]);
}
}
timer = ;
memset(dfn , , sizeof(dfn));
dfs1();
dfs2( , );
SGT.build( , , timer);
for (int i = q; i >= ; i--)
{
if (que[i].type == ) modify(que[i].u, que[i].v);
else ans[++len] = query(que[i].u , que[i].v);
}
reverse(ans + , ans + len + );
for (int i = ; i <= len; i++) printf("%d\n" , ans[i]); return ; }

[AHOI 2005] 航线规划的更多相关文章

  1. 解题:AHOI 2005 航线规划

    题面 这种不断删边的首先肯定想到时光倒流啊=.= 在最后剩下的连通图上跑出一棵搜索树,先将边权都赋为$1$,那么两点间的关键航线就是链上边权和,而每加入一条非树边$u,v$都会使得$u,v$链上的边的 ...

  2. BZOJ 1969: [Ahoi2005]LANE 航线规划( 树链剖分 )

    首先我们要时光倒流, 倒着做, 变成加边操作维护关键边. 先随意搞出一颗树, 树上每条边都是关键边(因为是树, 去掉就不连通了)....然后加边(u, v)时, 路径(u, v)上的所有边都变成非关键 ...

  3. 【BZOJ1969】航线规划(Link-Cut Tree)

    [BZOJ1969]航线规划(Link-Cut Tree) 题面 BZOJ 题解 删边操作 套路呀 离线读入倒过来做 变成加边操作 现在考虑怎么确定两点直接的关键路径条数 如果是一棵树,那么每条边都是 ...

  4. 让大疆去做测绘---航线规划软件APP

    让大疆去做测绘---航线规划软件APP http://blog.zhulong.com/u10783270/blogdetail7162540.html RockyCapture无人机航线飞行控制软件 ...

  5. 洛谷 P2542 [AHOI2005]航线规划 解题报告

    P2542 [AHOI2005]航线规划 题目描述 对Samuel星球的探险已经取得了非常巨大的成就,于是科学家们将目光投向了Samuel星球所在的星系--一个巨大的由千百万星球构成的Samuel星系 ...

  6. 【BZOJ 1969】 1969: [Ahoi2005]LANE 航线规划 (树链剖分+线段树)

    1969: [Ahoi2005]LANE 航线规划 Description 对Samuel星球的探险已经取得了非常巨大的成就,于是科学家们将目光投向了Samuel星球所在的星系——一个巨大的由千百万星 ...

  7. 【BZOJ1969】[Ahoi2005]LANE 航线规划 离线+树链剖分+线段树

    [BZOJ1969][Ahoi2005]LANE 航线规划 Description 对Samuel星球的探险已经取得了非常巨大的成就,于是科学家们将目光投向了Samuel星球所在的星系——一个巨大的由 ...

  8. P2542 【[AHOI2005]航线规划】

    P2542 [[AHOI2005]航线规划] 一个无向图,m个操作 删去一条边 给定两个点,求有多少边使得如果这条边不存在,给定的两个点不连通 一般这种删边的题目,考虑逆序加边处理 在删完的图中,任意 ...

  9. [Ahoi2005]LANE 航线规划

    题目描述 对Samuel星球的探险已经取得了非常巨大的成就,于是科学家们将目光投向了Samuel星球所在的星系——一个巨大的由千百万星球构成的Samuel星系. 星际空间站的Samuel II巨型计算 ...

随机推荐

  1. HTTP请求的缓存(Cache)机制

    原文地址:http://small.aiweimeng.top/index.php/archives/58.html 先来一张图: ####下面简单的来描述一下HTTP Cache机制: 当资源资源第 ...

  2. Blazor——Asp.net core的新前端框架

    原文:Blazor--Asp.net core的新前端框架 Blazor是微软在Asp.net core 3.0中推出的一个前端MVVM模型,它可以利用Razor页面引擎和C#作为脚本语言来构建WEB ...

  3. elasticsearch学习网站

    elasticsearch学习网站 https://elasticsearch.cn/

  4. [Javascript] Replicate JavaScript Constructor Inheritance with Simple Objects (OLOO)

    Do you get lost when working with functions and the new keyword? Prototypal inheritance can be compl ...

  5. 多线程网页爬虫 python 实现

    采用了多线程和锁机制,实现了广度优先算法的网页爬虫. 对于一个网络爬虫,如果要按广度遍历的方式下载,它就是这样干活的:         1.从给定的入口网址把第一个网页下载下来         2.从 ...

  6. SQL server 数据库测试题

  7. PHP生成excel(3)

    这一节主要是设置背景颜色.边框.字体大小.表格宽度 效果图 代码如下 <?php header("Content-Type:text/html;charset=utf-8") ...

  8. MergeLinklist

    写了一个合并有序链表,代码有点纠结啊.涉及到指针就是麻烦,DS课曹老师课件说linklist是DS的难点. . . 假设数组就非常easy了.链表就要小心. 里面遇到的一些情况.第一.最好是先确定l1 ...

  9. FragmentSharedFabTransition

    https://github.com/lgvalle/FragmentSharedFabTransition

  10. 10162 - Last Digit (数论+周期规律)

    UVA 10162 - Last Digit 题目链接 题意:求S=(11+22+...NN)%10 思路:打出0-9的每一个周期,发现周期为1或2或4.所以S是以20一个周期,打出表后发现20为4. ...