题意:

输入a、b, 求a/b 可以由多少个埃及分数组成。

埃及分数是形如1/a , a是自然数的分数。

如2/3 = 1/2 + 1/6, 但埃及分数中不允许有相同的 ,如不可以2/3 = 1/3 + 1/3.

求出可以表达a/b个数最少埃及分数方案, 如果个数相同则选取最小的分数最大。

#include <bits/stdc++.h>
#define LL long long
using namespace std;
int maxd;
long long v[],ans[];
bool better(int d){
for(int i = d; i >= ; i--){
if(v[i] != ans[i]){ //如果这一层没有标记, 或者标记的数小于传入的v[i], 说明当前为更优解
return ans[i] == - || v[i] < ans[i];
}
return false;
}
}
//求满足 1/c <= a/b 最大的1/c, 即最小的c
inline int get_first(LL a,LL b){
return b/a+;
}
//当前深度为d, 分母不能小于from, 分数之和为aa, bb
bool dfs(int d, int from, LL aa, LL bb){ if( d == maxd){
if(bb % aa) return false;
v[d] = bb / aa;
if(better(d)) memcpy(ans, v , sizeof(v));
return true;
} bool ok = false;
from = max(from, get_first(aa, bb)); // 如果上一次递归的from不符合aa/bb最小的分母, 则取get_first(aa,bb) for(int i = from; ; i++) {
// 剪枝:如果剩下的maxd+1-d个分数全部都是1/i,加起来仍然不超过aa/bb,则无解
if(bb * (maxd+-d) <= i * aa) break;
v[d] = i;
// 计算aa/bb - 1/i,设结果为a2/b2
LL b2 = bb*i;
LL a2 = aa*i - bb;
LL g = __gcd(a2, b2); // 以便约分
if(dfs(d+, i+, a2/g, b2/g)) ok = true;
}
return ok;
}
int main(){
int a, b;
scanf("%d %d", &a, &b);
for(maxd = ; ;maxd++){ //这里可以做一些限制, 层数上限不一定为infinite
memset(ans, -, sizeof(ans));
if(dfs(,get_first(a,b),a,b)) {
break;
}
}
for(int i = ; i <= maxd; i++) printf("%lld ", ans[i]);
}

Vijos 1308 埃及分数(迭代加深搜索)的更多相关文章

  1. Vijos 1308 埃及分数 - 迭代加深

    描述 在古埃及,人们使用单位分数的和(形如1/a的, a是自然数)表示一切有理数.如:2/3=1/2+1/6,但不允许2/3=1/3+1/3,因为加数中有相同的.对于一个分数a/b,表示方法有很多种, ...

  2. 埃及分数 迭代加深搜索 IDA*

    迭代加深搜索 IDA* 首先枚举当前选择的分数个数上限maxd,进行迭代加深 之后进行估价,假设当前分数之和为a,目标分数为b,当前考虑分数为1/c,那么如果1/c×(maxd - d)< a ...

  3. codevs 1288 埃及分数 (迭代加深搜索)

    题目大意:给你一个分数$a/b$,把它拆解成$\sum_{i=1}^{n}1/ai$的形式,必须保证$ai$互不相同的情况下,尽量保证n最小,其次保证分母最大的分数的分母最小 什么鬼玄学题!!! 因为 ...

  4. 埃及分数问题_迭代加深搜索_C++

    一.题目背景 http://codevs.cn/problem/1288/ 给出一个真分数,求用最少的1/a形式的分数表示出这个真分数,在数量相同的情况下保证最小的分数最大,且每个分数不同. 如 19 ...

  5. vijos1308 埃及分数(迭代加深搜索)

    题目链接:点击打开链接 题目描写叙述: 在古埃及.人们使用单位分数的和(形如1/a的, a是自然数)表示一切有理数.如:2/3=1/2+1/6,但不同意2/3=1/3+1/3,由于加数中有同样的.对于 ...

  6. UVA12558 Egyptian Fractions (HARD version) (埃及分数,迭代加深搜索)

    UVA12558 Egyptian Fractions (HARD version) 题解 迭代加深搜索,适用于无上界的搜索.每次在一个限定范围中搜索,如果无解再进一步扩大查找范围. 本题中没有分数个 ...

  7. [Vijos1308]埃及分数(迭代加深搜索 + 剪枝)

    传送门 迭代加深搜索是必须的,先枚举加数个数 然后搜索分母 这里有一个强大的剪枝,就是确定分母的范围 #include <cstdio> #include <cstring> ...

  8. POJ1129Channel Allocation[迭代加深搜索 四色定理]

    Channel Allocation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14601   Accepted: 74 ...

  9. BZOJ1085: [SCOI2005]骑士精神 [迭代加深搜索 IDA*]

    1085: [SCOI2005]骑士精神 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1800  Solved: 984[Submit][Statu ...

随机推荐

  1. Cloudera Manager是啥?主要是干啥的?

    简单来说,Cloudera Manager是一个拥有集群自动化安装.中心化管理.集群监控.报警功能的一个工具(软件),使得安装集群从几天的时间缩短在几个小时内,运维人员从数十人降低到几人以内,极大的提 ...

  2. Python 基础知识(5)

    1:引用 当我们把一个变量给另一个变量赋值的时候,不是把A变量中的值给B一份,而是把A变量中的地址给了B,这就是引用.任何牵扯到等号赋值的地方,统统都是引用. a = 100 b = a id(a) ...

  3. AWVS11使用教程——Acunetix Web Vulnerability Scanner 11.x

    AWVS11使用教程 一:普通扫描. 二:报告生成. 三:登陆扫描. Acunetix Web Vulnerability Scanner(简称AWVS)是一款知名的网络漏洞扫描工具,它通过网络爬虫测 ...

  4. 题解报告:poj 1738 An old Stone Game(区间dp)

    Description There is an old stone game.At the beginning of the game the player picks n(1<=n<=5 ...

  5. C51之数据范围

    在C51中各数据类型的范围如下:如果宏常量大于65536,则要加UL后缀:乘法运算不能只将结果强制类型转换,而应在被乘数前加(unsigned long)强制转换. 2 因为RAM有限,所以运算量大的 ...

  6. P1597 语句解析

    题目背景 木有背景…… 题目描述 一串(<255)PASCAL语言,只有a,b,c 3个变量,而且只有赋值语句,赋值只能是一个一位的数字或一个变量,未赋值的变量值为0.输出a,b,c 最终的值. ...

  7. sql server的一个字符串分割的表值函数方法

    ALTER function [dbo].[BOSplit](@SourceSql nvarchar(max),  --要分割的字段@StrSeprate varchar(10)      --分割符 ...

  8. AJPFX的反射学习笔记

    反射是描述 数据结构的结构        属性.方法(数据)元数据        类(数据结构)描述数据的结构-->类也是特殊的对象---->元数据        CLASS类 描述数据结 ...

  9. NestedScrollView嵌套RecycleView发生的小问题

    1.解决方法:嵌套滑动不激活. recycleView.setNestedScrollingEnable(false); 这样做有个弊端,RecycleView的item会一次性加载完,不管是否显示, ...

  10. ios---setContentOffset

    UIView * farmeView=[[UIView alloc] initWithFrame:CGRectMake(0, 0, self.view.frame.size.width,  self. ...