Vijos 1308 埃及分数(迭代加深搜索)
题意:
输入a、b, 求a/b 可以由多少个埃及分数组成。
埃及分数是形如1/a , a是自然数的分数。
如2/3 = 1/2 + 1/6, 但埃及分数中不允许有相同的 ,如不可以2/3 = 1/3 + 1/3.
求出可以表达a/b个数最少埃及分数方案, 如果个数相同则选取最小的分数最大。
#include <bits/stdc++.h>
#define LL long long
using namespace std;
int maxd;
long long v[],ans[];
bool better(int d){
for(int i = d; i >= ; i--){
if(v[i] != ans[i]){ //如果这一层没有标记, 或者标记的数小于传入的v[i], 说明当前为更优解
return ans[i] == - || v[i] < ans[i];
}
return false;
}
}
//求满足 1/c <= a/b 最大的1/c, 即最小的c
inline int get_first(LL a,LL b){
return b/a+;
}
//当前深度为d, 分母不能小于from, 分数之和为aa, bb
bool dfs(int d, int from, LL aa, LL bb){ if( d == maxd){
if(bb % aa) return false;
v[d] = bb / aa;
if(better(d)) memcpy(ans, v , sizeof(v));
return true;
} bool ok = false;
from = max(from, get_first(aa, bb)); // 如果上一次递归的from不符合aa/bb最小的分母, 则取get_first(aa,bb) for(int i = from; ; i++) {
// 剪枝:如果剩下的maxd+1-d个分数全部都是1/i,加起来仍然不超过aa/bb,则无解
if(bb * (maxd+-d) <= i * aa) break;
v[d] = i;
// 计算aa/bb - 1/i,设结果为a2/b2
LL b2 = bb*i;
LL a2 = aa*i - bb;
LL g = __gcd(a2, b2); // 以便约分
if(dfs(d+, i+, a2/g, b2/g)) ok = true;
}
return ok;
}
int main(){
int a, b;
scanf("%d %d", &a, &b);
for(maxd = ; ;maxd++){ //这里可以做一些限制, 层数上限不一定为infinite
memset(ans, -, sizeof(ans));
if(dfs(,get_first(a,b),a,b)) {
break;
}
}
for(int i = ; i <= maxd; i++) printf("%lld ", ans[i]);
}
Vijos 1308 埃及分数(迭代加深搜索)的更多相关文章
- Vijos 1308 埃及分数 - 迭代加深
描述 在古埃及,人们使用单位分数的和(形如1/a的, a是自然数)表示一切有理数.如:2/3=1/2+1/6,但不允许2/3=1/3+1/3,因为加数中有相同的.对于一个分数a/b,表示方法有很多种, ...
- 埃及分数 迭代加深搜索 IDA*
迭代加深搜索 IDA* 首先枚举当前选择的分数个数上限maxd,进行迭代加深 之后进行估价,假设当前分数之和为a,目标分数为b,当前考虑分数为1/c,那么如果1/c×(maxd - d)< a ...
- codevs 1288 埃及分数 (迭代加深搜索)
题目大意:给你一个分数$a/b$,把它拆解成$\sum_{i=1}^{n}1/ai$的形式,必须保证$ai$互不相同的情况下,尽量保证n最小,其次保证分母最大的分数的分母最小 什么鬼玄学题!!! 因为 ...
- 埃及分数问题_迭代加深搜索_C++
一.题目背景 http://codevs.cn/problem/1288/ 给出一个真分数,求用最少的1/a形式的分数表示出这个真分数,在数量相同的情况下保证最小的分数最大,且每个分数不同. 如 19 ...
- vijos1308 埃及分数(迭代加深搜索)
题目链接:点击打开链接 题目描写叙述: 在古埃及.人们使用单位分数的和(形如1/a的, a是自然数)表示一切有理数.如:2/3=1/2+1/6,但不同意2/3=1/3+1/3,由于加数中有同样的.对于 ...
- UVA12558 Egyptian Fractions (HARD version) (埃及分数,迭代加深搜索)
UVA12558 Egyptian Fractions (HARD version) 题解 迭代加深搜索,适用于无上界的搜索.每次在一个限定范围中搜索,如果无解再进一步扩大查找范围. 本题中没有分数个 ...
- [Vijos1308]埃及分数(迭代加深搜索 + 剪枝)
传送门 迭代加深搜索是必须的,先枚举加数个数 然后搜索分母 这里有一个强大的剪枝,就是确定分母的范围 #include <cstdio> #include <cstring> ...
- POJ1129Channel Allocation[迭代加深搜索 四色定理]
Channel Allocation Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 14601 Accepted: 74 ...
- BZOJ1085: [SCOI2005]骑士精神 [迭代加深搜索 IDA*]
1085: [SCOI2005]骑士精神 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1800 Solved: 984[Submit][Statu ...
随机推荐
- PHPmail 亲测可用
2017年5月8日9:10:47 1.在模块的配置文件中加入下里面代码,账号最好用126邮箱'THINK_EMAIL' => array( 'SMTP_HOST' => 'smtp.163 ...
- c++,类的对象作为形参时一定会调用复制构造函数吗?
c++,类的对象作为形参时一定会调用复制构造函数吗? 答:如果参数是引用传递,则不会调用任何构造函数:如果是按值传递,则调用复制构造函数,按参数的值构造一个临时对象,这个临时对象仅仅在函数执行是存在, ...
- [洛谷P2417]课程
题目链接: 点我 题目分析: 二分图最大匹配裸题,跑完匈牙利判断\(ans\)是否等于教室数即可 多组数据请注意初始化. 代码: #include<bits/stdc++.h> #defi ...
- Input对象2(貌似是独立标签)
6.hidden隐藏域的样式表单:Hidden属性可以创建一个隐藏域,数据会被隐藏起来,因此用户是无法操作的.这样说来hidden好像没有什么用,事实上,正是出于安全的考虑,在多步操作数据的同时,用h ...
- Lumia 刷机(强刷)Message send failed解决办法
强刷可以救砖,不需要验证地区code,可以跨刷其它国家/地区的固件,但不是所有机型都可以这样,Lumia 620是支持跨刷的. 看本文你首先要知道使用Nokia Care Suite强刷的步骤,参考从 ...
- day02 -操作系统及python入门
操作系统 1.什么是操作系统? 操作系统位于计算机硬件和应用软件之间. 是一个协调.控制.管理计算机硬件资源和软件资源的控制程序. 2.为何要有操作系统? ①·控制硬件 ②·把对硬件的复杂的操作封装成 ...
- SQL Server 查询锁表和接锁表
SQL Server 查询锁表 select request_session_id spid,OBJECT_NAME(resource_associated_entity_id) as tableNa ...
- Redis学习笔记(六)有序集合进阶
1.基础操作 ZCARD(获取成员数量) ZINCRBY key_name num member(将member的分数加num) ZCOUNT key_name min max(获取分数在min与ma ...
- Javascript异步编程的常用方法
Javascript语言的执行环境是"单线程"(single thread).所谓"单线程",就是指一次只能完成一件任务.如果有多个任务,就必须排队,前面一个任 ...
- Mysql无法启动服务解决办法
只需要输入:mysqld --initialize 进行初始化,即可启动