Codeforces Round #233 (Div. 2)D. Painting The Wall 概率DP
User ainta decided to paint a wall. The wall consists of n2 tiles, that are arranged in an n × n table. Some tiles are painted, and the others are not. As he wants to paint it beautifully, he will follow the rules below.
- Firstly user ainta looks at the wall. If there is at least one painted cell on each row and at least one painted cell on each column, he stops coloring. Otherwise, he goes to step 2.
- User ainta choose any tile on the wall with uniform probability.
- If the tile he has chosen is not painted, he paints the tile. Otherwise, he ignores it.
- Then he takes a rest for one minute even if he doesn't paint the tile. And then ainta goes to step 1.
However ainta is worried if it would take too much time to finish this work. So he wants to calculate the expected time needed to paint the wall by the method above. Help him find the expected time. You can assume that choosing and painting any tile consumes no time at all.
The first line contains two integers n and m (1 ≤ n ≤ 2·103; 0 ≤ m ≤ min(n2, 2·104)) — the size of the wall and the number of painted cells.
Next m lines goes, each contains two integers ri and ci (1 ≤ ri, ci ≤ n) — the position of the painted cell. It is guaranteed that the positions are all distinct. Consider the rows of the table are numbered from 1 to n. Consider the columns of the table are numbered from1 to n.
In a single line print the expected time to paint the wall in minutes. Your answer will be considered correct if it has at most 10 - 4 absolute or relative error.
5 2
2 3
4 1
11.7669491886
2 2
1 1
1 2
2.0000000000
1 1
1 1
0.0000000000 题意:有一个n*n的墙,现在小明来刷墙,如果每一行每一列都至少有一个格子刷过了就停止工作,否则每次随机选一个格子,如果刷过了就不刷如果没刷过就刷,然后休息一分钟,求停止工作时时间的数学期望(开始之前已经有m个格子刷过了)
题解:dp[i][j]表示还有i行j列未刷
初始化: dp[i][0]=((n-i)/n)*dp[i][0]+dp[i-1][0]*i/n+1;
dp[0][j]=((n-j)/n)*dp[0][j]+dp[0][j-1]*j/n+1;
转移: dp[i][j]=dp[i][j]*(n-i)(n-j)/n^2+dp[i-1][j]*(i*(n-j))/n^2+dp[i][j-1]*((n-i)*j)/n^2+dp[i-1][j-1]*(i*j)/n^2+1;
#include<iostream>
#include<cstdio>
using namespace std;
double dp[][];
int n,m,a[],b[];
int main()
{
cin>>n>>m;
int x,y;
int l=n,r=n;
for(int i=; i<m; i++)
{
cin>>x>>y;
if(!a[x]) l--;
if(!b[y]) r--;
a[x]=,b[y]=;
}
for(int i=; i<=n; i++) dp[i][]=dp[i-][]+(double)n/i;
for(int j=; j<=n; j++) dp[][j]=dp[][j-]+(double)n/j;
for(int i=; i<=n; i++)
{
for(int j=; j<=n; j++)
{dp[i][j]=(dp[i-][j]*i*(n-j)+n*n+dp[i][j-]*j*(n-i)+dp[i-][j-]*i*j)/(n*n-(n-i)*(n-j));
}
}
printf("%0.10f\n",dp[l][r]);
return ;
}
代码
Codeforces Round #233 (Div. 2)D. Painting The Wall 概率DP的更多相关文章
- Codeforces Round #301 (Div. 2) D. Bad Luck Island 概率DP
D. Bad Luck Island Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/540/pr ...
- Codeforces Round #256 (Div. 2) C. Painting Fence 或搜索DP
C. Painting Fence time limit per test 1 second memory limit per test 512 megabytes input standard in ...
- Codeforces Round #256 (Div. 2) C. Painting Fence (搜索 or DP)
[题目链接]:click here~~ [题目大意]:题意:你面前有宽度为1,高度给定的连续木板,每次能够刷一横排或一竖列,问你至少须要刷几次. Sample Input Input 5 2 2 1 ...
- Codeforces Round #105 (Div. 2) D. Bag of mice 概率dp
题目链接: http://codeforces.com/problemset/problem/148/D D. Bag of mice time limit per test2 secondsmemo ...
- Codeforces Round #293 (Div. 2) D. Ilya and Escalator 概率DP
D. Ilya and Escalator time limit per test 2 seconds memory limit per test 256 megabytes input standa ...
- Codeforces Round #284 (Div. 2) D. Name That Tune [概率dp]
D. Name That Tune time limit per test 1 second memory limit per test 256 megabytes input standard in ...
- Codeforces Round #597 (Div. 2) E. Hyakugoku and Ladders 概率dp
E. Hyakugoku and Ladders Hyakugoku has just retired from being the resident deity of the South Black ...
- Codeforces Round #233 (Div. 2) B. Red and Blue Balls
#include <iostream> #include <string> using namespace std; int main(){ int n; cin >&g ...
- 贪心 Codeforces Round #173 (Div. 2) B. Painting Eggs
题目传送门 /* 题意:给出一种方案使得abs (A - G) <= 500,否则输出-1 贪心:每次选取使他们相差最小的,然而并没有-1:) */ #include <cstdio> ...
随机推荐
- php更改wampserver的站点目录
我都wampserver安装在f盘 F:\wamp\bin\apache\Apache2.4.4\conf文件夹下的hhtpd.conf文件ctrl+f查找DocumentRoot,第二次的位置修改即 ...
- python嵌套列表
从excel读取一行信息添加到一个临时列表,最后将所有行的列表添加到一个大列表. 源码: import xlrd,reclass Info(): def read_info(self): data = ...
- 负对数似然(negative log-likelihood)
negative log likelihood文章目录negative log likelihood似然函数(likelihood function)OverviewDefinition离散型概率分布 ...
- 洛谷——P2613 【模板】有理数取余
P2613 [模板]有理数取余 读入优化预处理 $\frac {a}{b}\mod 19620817$ 也就是$a\times b^{-1}$ $a\times b^{-1}\mod 19620817 ...
- luogu 4884 多少个1?
题目描述: 给定整数K和质数m,求最小的正整数N,使得 11111⋯1(N个1)≡K(mod m) 说人话:就是 111...1111 mod m =K 题解: 将两边一起*9+1,左边就是10^an ...
- 77-CCI,Commodity Channel Index,商品通道指标.(2015.7.1)
CCI,Commodity Channel Index 商品通道指标 Channel Index,商品通道指标.(2015.7.1)" title="77-CCI,Commodit ...
- C++ 类 直接定义对象与new对象的区别
new创建类对象与直接定义的区别 new创建对象的特点 new创建类对象需要指针接收,一处初始化,多处使用 new创建类对象使用完需delete销毁 new创建对象直接使用堆空间,而局部不用new定义 ...
- 牛客网NOIP赛前集训营 第6场 T1 最长路
[题解] 先建反向图,然后跑拓扑排序求出最长路. 将所有的点按照最长路从小到大分层,把上一层连向这一层的边按照边权为第一关键字.起点的排名为第二关键字排序. 按照这个顺序更新这一层的答案,按照这一层每 ...
- 【RQNOJ PID106】最大加权矩形(DP)
题目描述 给定一个正整数n( n<=100),然后输入一个N*N矩阵.求矩阵中最大加权矩形,即矩阵的每一个元素都有一权值,权值定义在整数集上.从中找一矩形,矩形大小无限制,是其中包含的所有元素的 ...
- 2017 计蒜之道 初赛 第一场 A 阿里的新游戏
题链:https://nanti.jisuanke.com/t/15499 这题观察图纸可知成三线段上的相邻点之间的距离有1,2,3三种情况的,同时要成线段必然是同横坐标或者纵坐标,然后我们排除掉穿过 ...