bzoj 4756: [Usaco2017 Jan]Promotion Counting【dfs+树状数组】
思路还是挺好玩的
首先简单粗暴的想法是dfs然后用离散化权值树状数组维护,但是这样有个问题就是这个全局的权值树状数组里并不一定都是当前点子树里的
第一反应是改树状数组,但是显然不太现实,但是可以这样想,就是现在统计子树之前把查到的答案减去,然后再查子树最后加上查到的答案,这样相当于去重了
方便起见,离散化的时候按从大到小的顺序,这样就变成了求比当前点小的点
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<map>
using namespace std;
const int N=100005;
int n,a[N],g[N],h[N],cnt,c[N],ans[N];
map<int,int>mp;
struct qwe
{
int ne,to;
}e[N<<1];
bool cmp(const int &a,const int &b)
{
return a>b;
}
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
h[u]=cnt;
}
void ins(int x)
{
for(int i=x;i<=n;i+=(i&(-i)))
c[i]++;
}
int ques(int x)
{
int r=0;
for(int i=x;i>=1;i-=(i&(-i)))
r+=c[i];
return r;
}
void dfs(int u)
{
ans[u]-=ques(a[u]);
for(int i=h[u];i;i=e[i].ne)
dfs(e[i].to);
ans[u]+=ques(a[u]);
ins(a[u]);
}
int main()
{
n=read();
for(int i=1;i<=n;i++)
a[i]=g[i]=read();
for(int i=2;i<=n;i++)
{
int x=read();
add(x,i);
}
sort(g+1,g+1+n,cmp);
for(int i=1;i<=n;i++)
mp[g[i]]=i;
for(int i=1;i<=n;i++)
a[i]=mp[a[i]];
dfs(1);
for(int i=1;i<=n;i++)
printf("%d\n",ans[i]);
return 0;
}
bzoj 4756: [Usaco2017 Jan]Promotion Counting【dfs+树状数组】的更多相关文章
- 【bzoj4756】[Usaco2017 Jan]Promotion Counting 离散化+树状数组
原文地址:http://www.cnblogs.com/GXZlegend/p/6832263.html 题目描述 The cows have once again tried to form a s ...
- bzoj 4756 [Usaco2017 Jan]Promotion Counting——线段树合并
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4756 线段树合并裸题.那种返回 int 的与传引用的 merge 都能过.不知别的题是不是这 ...
- 线段树合并 || 树状数组 || 离散化 || BZOJ 4756: [Usaco2017 Jan]Promotion Counting || Luogu P3605 [USACO17JAN]Promotion Counting晋升者计数
题面:P3605 [USACO17JAN]Promotion Counting晋升者计数 题解:这是一道万能题,树状数组 || 主席树 || 线段树合并 || 莫队套分块 || 线段树 都可以写..记 ...
- BZOJ 4756 [Usaco2017 Jan]Promotion Counting(线段树合并)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4756 [题目大意] 给出一棵树,对于每个节点,求其子树中比父节点大的点个数 [题解] ...
- BZOJ[Usaco2017 Jan]Promotion Counting——线段树合并
题目描述 The cows have once again tried to form a startup company, failing to remember from past experie ...
- 【BZOJ】4756: [Usaco2017 Jan]Promotion Counting
[题意]带点权树,统计每个结点子树内点权比它大的结点数. [算法]线段树合并 [题解]对每个点建权值线段树(动态开点),DFS中将自身和儿子线段树合并后统计. 注意三个量tot,cnt,tots,细心 ...
- BZOJ4756: [Usaco2017 Jan]Promotion Counting(线段树合并)
题意 题目链接 Sol 线段树合并板子题 #include<bits/stdc++.h> using namespace std; const int MAXN = 400000, SS ...
- [BZOJ4756][Usaco2017 Jan]Promotion Counting 树状数组
4756: [Usaco2017 Jan]Promotion Counting Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 305 Solved: ...
- Weak Pair (dfs+树状数组)
Weak Pair (dfs+树状数组) 题意 这个题目是要求:一颗树上,有n个节点,给出每个节点的权值.另外给出一个值k,问有多少对节点满足: \(power[u]*power[v]<=k\) ...
随机推荐
- FIRST集合、FOLLOW集合、SELECT集合以及预测分析表地构造
FIRST集合.FOLLOW集合.SELECT集合以及预测分析表地构造 FIRST集合的简单理解就是推导出的字符串的开头终结符的集合. FOLLOW集合简单的理解就对于非终结符后面接的第一个终结符. ...
- Vue 实例以及生命周期
最简单的 Vue 实例 //html <div id="app"> {{message}} </div> //javascript var vm = new ...
- Quartz进一步学习与使用
一.再思考 了解Quartz.NET的基本使用方法了.但如果想方便的知道某个作业执行情况,需要暂停,启动等操作行为,这时候就需要个Job管理的界面,如何才能达到我们想到的效果,查看相关Quartz.n ...
- POJ2367 拓扑排序 裸题 板子题
http://poj.org/problem?id=2367 队列版 #include <stdio.h> #include <math.h> #include <str ...
- Codeforces 631B Print Check【模拟】
题意: 按顺序给定列和行进行涂色,输出最终得到的方格颜色分布. 分析: 记录下涂的次序,如果某个元素的横和列都被涂过,那么就选择次序最大的颜色. 代码: #include<iostream> ...
- Codeforces 651D Image Preview【二分+枚举】
题意: 若干张照片,从头开始可以向左右两边读,已经读过的不需要再读,有的照片需要翻转,给定读.滑动和翻转消耗的时间,求在给定时间内最多能读多少页? 分析: 首先明确,只横跨一次,即先一直读一边然后再一 ...
- Minimum Depth of Binary Tree(二叉树DFS)
Given a binary tree, find its minimum depth. The minimum depth is the number of nodes along the shor ...
- 一个简单的Java文件工具类
package com.xyworkroom.ntko.util; import java.io.File; import java.io.FileInputStream; import java.i ...
- Android GIS开发系列-- 入门季(13)Gdal简单写个shp文件
Gdal是用来读写栅格与矢量数据的,在Gdal官网,可以下载相关的资源进行平台的编译.其实Arcgis底层也是用Gdal来读取shp文件的,那在Android中可以直接读写shp文件吗,是可以的.这里 ...
- storm ——Understanding the Parallelism of a Storm Topology
http://www.michael-noll.com/blog/2012/10/16/understanding-the-parallelism-of-a-storm-topology/ 这篇文章好 ...