多线程编程-- part5.1 互斥锁之公平锁-获取锁
基本概念
1.AQS:AbstractQueuedSynchronizer类
AQS是java中管理“锁”的抽象类,锁的许多公共方法都是在这个类中实现。AQS是独占锁(例如,ReentrantLock)和共享锁(例如,Semaphore)的公共父类。
(01) 独占锁 -- 锁在一个时间点只能被一个线程锁占有。根据锁的获取机制,它又划分为“公平锁”和“非公平锁”。公平锁,是按照通过CLH等待线程按照先来先得的规则,公平的获取锁;而非公平锁,则当线程要获取锁时,它会无视CLH等待队列而直接获取锁。独占锁的典型实例子是ReentrantLock,此外,ReentrantReadWriteLock.WriteLock也是独占锁。
(02) 共享锁 -- 能被多个线程同时拥有,能被共享的锁。JUC包中的ReentrantReadWriteLock.ReadLock,CyclicBarrier, CountDownLatch和Semaphore都是共享锁
2.CLH队列:Craig, Landin, and Hagersten lock queue
CLH队列是AQS中“等待锁”的线程队列。在多线程中,为了保护竞争资源不被多个线程同时操作而起来错误,我们常常需要通过锁来保护这些资源。在独占锁中,竞争资源在一个时间点只能被一个线程锁访问;而其它线程则需要等待。CLH就是管理这些“等待锁”的线程的队列。
CLH是一个非阻塞的 FIFO 队列。也就是说往里面插入或移除一个节点的时候,在并发条件下不会阻塞,而是通过自旋锁和 CAS 保证节点插入和移除的原子性。
自旋锁:但是自旋锁不会引起调用者睡眠,如果自旋锁已经被别的执行单元保持,调用者就一直循环在那里看是否该自旋锁的保持者已经释放了锁
3.CAS函数:Compare And Swap
CAS函数,是比较并交换函数,它是原子操作函数;即,通过CAS操作的数据都是以原子方式进行的。例如,compareAndSetHead(), compareAndSetTail(), compareAndSetNext()等函数。它们共同的特点是,这些函数所执行的动作是以原子的方式进行的。
ReentrantLock数据结构
从图中可以看出:
(01) ReentrantLock实现了Lock接口。
(02) ReentrantLock与sync是组合关系。ReentrantLock中,包含了Sync对象;而且,Sync是AQS的子类;更重要的是,Sync有两个子类FairSync(公平锁)和NonFairSync(非公平锁)。ReentrantLock是一个独占锁,至于它到底是公平锁还是非公平锁,就取决于sync对象是"FairSync的实例"还是"NonFairSync的实例"。
获取公平锁
1.lock()
lock()在ReentrantLock.java的FairSync类中实现,它的源码如下:
final void lock() {
acquire(1);
}
说明:“当前线程”实际上是通过acquire(1)获取锁的。
这里说明一下“1”的含义,它是设置“锁的状态”的参数。对于“独占锁”而言,锁处于可获取状态时,它的状态值是0;锁被线程初次获取到了,它的状态值就变成了1。
由于ReentrantLock(公平锁/非公平锁)是可重入锁,所以“独占锁”可以被单个线程多此获取,每获取1次就将锁的状态+1。也就是说,初次获取锁时,通过acquire(1)将锁的状态值设为1;再次获取锁时,将锁的状态值设为2;依次类推...这就是为什么获取锁时,传入的参数是1的原因了。
可重入就是指锁可以被单个线程多次获取。
2.Acquire()
acquire()在AQS中实现的,它的源码如下:
public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}
(01) “当前线程”首先通过tryAcquire()尝试获取锁。获取成功的话,直接返回;尝试失败的话,进入到等待队列排序等待(前面还有可能有需要线程在等待该锁)。
(02) “当前线程”尝试失败的情况下,先通过addWaiter(Node.EXCLUSIVE)来将“当前线程”加入到"CLH队列(非阻塞的FIFO队列)"末尾。CLH队列就是线程等待队列。
(03) 再执行完addWaiter(Node.EXCLUSIVE)之后,会调用acquireQueued()来获取锁。由于此时ReentrantLock是公平锁,它会根据公平性原则来获取锁。
(04) “当前线程”在执行acquireQueued()时,会进入到CLH队列中休眠等待,直到获取锁了才返回!如果“当前线程”在休眠等待过程中被中断过,acquireQueued会返回true,此时"当前线程"会调用selfInterrupt()来自己给自己产生一个中断。至于为什么要自己给自己产生一个中断,后面再介绍。
一.tryAcquire()
<1>tryAcquire()
公平锁的tryAcquire()在ReentrantLock.java的FairSync类中实现,源码如下:
protected final boolean tryAcquire(int acquires) {
// 获取“当前线程”
final Thread current = Thread.currentThread();
// 获取“独占锁”的状态
int c = getState();
// c=0意味着“锁没有被任何线程锁拥有”,
if (c == 0) {
// 若“锁没有被任何线程锁拥有”,
// 则判断“当前线程”是不是CLH队列中的第一个线程线程,
// 若是的话,则获取该锁,设置锁的状态,并切设置锁的拥有者为“当前线程”。
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
// 如果“独占锁”的拥有者已经为“当前线程”,
// 则将更新锁的状态。
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
说明:根据代码,我们可以分析出,tryAcquire()的作用就是尝试去获取锁。注意,这里只是尝试!
尝试成功的话,返回true;尝试失败的话,返回false,后续再通过其它办法来获取该锁。后面我们会说明,在尝试失败的情况下,是如何一步步获取锁的。
<2>hasQueuedPredecessors()
hasQueuedPredecessors()在AQS中实现,源码如下:
public final boolean hasQueuedPredecessors() {
Node t = tail;
Node h = head;
Node s;
return h != t &&
((s = h.next) == null || s.thread != Thread.currentThread());
}
说明: 通过代码,能分析出,hasQueuedPredecessors() 是通过判断"当前线程"是不是在CLH队列的队首,来返回AQS中是不是有比“当前线程”等待更久的线程。下面对head、tail和Node进行说明。
<3>Node源码
private transient volatile Node head; // CLH队列的队首
private transient volatile Node tail; // CLH队列的队尾 // CLH队列的节点
static final class Node {
static final Node SHARED = new Node();
static final Node EXCLUSIVE = null; // 线程已被取消,对应的waitStatus的值
static final int CANCELLED = 1;
// “当前线程的后继线程需要被unpark(唤醒)”,对应的waitStatus的值。
// 一般发生情况是:当前线程的后继线程处于阻塞状态,而当前线程被release或cancel掉,因此需要唤醒当前线程的后继线程。
static final int SIGNAL = -1;
// 线程(处在Condition休眠状态)在等待Condition唤醒,对应的waitStatus的值
static final int CONDITION = -2;
// (共享锁)其它线程获取到“共享锁”,对应的waitStatus的值
static final int PROPAGATE = -3; // waitStatus为“CANCELLED, SIGNAL, CONDITION, PROPAGATE”时分别表示不同状态,
// 若waitStatus=0,则意味着当前线程不属于上面的任何一种状态。
volatile int waitStatus; // 前一节点
volatile Node prev; // 后一节点
volatile Node next; // 节点所对应的线程
volatile Thread thread; // nextWaiter是“区别当前CLH队列是 ‘独占锁’队列 还是 ‘共享锁’队列 的标记”
// 若nextWaiter=SHARED,则CLH队列是“独占锁”队列;
// 若nextWaiter=EXCLUSIVE,(即nextWaiter=null),则CLH队列是“共享锁”队列。
Node nextWaiter; // “共享锁”则返回true,“独占锁”则返回false。
final boolean isShared() {
return nextWaiter == SHARED;
} // 返回前一节点
final Node predecessor() throws NullPointerException {
Node p = prev;
if (p == null)
throw new NullPointerException();
else
return p;
} Node() { // Used to establish initial head or SHARED marker
} // 构造函数。thread是节点所对应的线程,mode是用来表示thread的锁是“独占锁”还是“共享锁”。
Node(Thread thread, Node mode) { // Used by addWaiter
this.nextWaiter = mode;
this.thread = thread;
} // 构造函数。thread是节点所对应的线程,waitStatus是线程的等待状态。
Node(Thread thread, int waitStatus) { // Used by Condition
this.waitStatus = waitStatus;
this.thread = thread;
}
}
Node是CLH队列的节点,代表“等待锁的线程队列”。
(01) 每个Node都会一个线程对应。
(02) 每个Node会通过prev和next分别指向上一个节点和下一个节点,这分别代表上一个等待线程和下一个等待线程。
(03) Node通过waitStatus保存线程的等待状态。
(04) Node通过nextWaiter来区分线程是“独占锁”线程还是“共享锁”线程。如果是“独占锁”线程,则nextWaiter的值为EXCLUSIVE;如果是“共享锁”线程,则nextWaiter的值是SHARED。
<4>compareAndSetState()
compareAndSetState()在AQS中实现。它的源码如下:
protected final boolean compareAndSetState(int expect, int update) {
return unsafe.compareAndSwapInt(this, stateOffset, expect, update);
}
说明: compareAndSwapInt() 是sun.misc.Unsafe类中的一个本地方法。对此,我们需要了解的是 compareAndSetState(expect, update) 是以原子的方式操作当前线程;若当前线程的状态为expect,则设置它的状态为update。
<5>setExclusiveOwnerThread()
setExclusiveOwnerThread()在AbstractOwnableSynchronizer.java中实现,它的源码如下:
// exclusiveOwnerThread是当前拥有“独占锁”的线程
private transient Thread exclusiveOwnerThread;
protected final void setExclusiveOwnerThread(Thread t) {
exclusiveOwnerThread = t;
}
说明:setExclusiveOwnerThread()的作用就是,设置线程t为当前拥有“独占锁”的线程。
6.getState()和setState()
6. getState(), setState()
getState()和setState()都在AQS中实现,源码如下:
// 锁的状态
private volatile int state;
// 设置锁的状态
protected final void setState(int newState) {
state = newState;
}
// 获取锁的状态
protected final int getState() {
return state;
}
说明:state表示锁的状态,对于“独占锁”而已,state=0表示锁是可获取状态(即,锁没有被任何线程锁持有)。由于java中的独占锁是可重入的,state的值可以>1。
小结:tryAcquire()的作用就是让“当前线程”尝试获取锁。获取成功返回true,失败则返回false。
二.addWaiter()
addWaiter(Node.EXCLUSIVE)的作用是,创建“当前线程”的Node节点,且Node中记录“当前线程”对应的锁是“独占锁”类型,并且将该节点添加到CLH队列的末尾。
<1>addWaiter()
addWaiter()在AQS中实现,源码如下:
private Node addWaiter(Node mode) {
// 新建一个Node节点,节点对应的线程是“当前线程”,“当前线程”的锁的模型是mode。
Node node = new Node(Thread.currentThread(), mode);
Node pred = tail;
// 若CLH队列不为空,则将“当前线程”添加到CLH队列末尾
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
// 若CLH队列为空,则调用enq()新建CLH队列,然后再将“当前线程”添加到CLH队列中。
enq(node);
return node;
}
说明:对于“公平锁”而言,addWaiter(Node.EXCLUSIVE)会首先创建一个Node节点,节点的类型是“独占锁”(Node.EXCLUSIVE)类型。然后,再将该节点添加到CLH队列的末尾。
<2>compareAndSetTail()
compareAndSetTail()在AQS中实现,源码如下:
private final boolean compareAndSetTail(Node expect, Node update) {
return unsafe.compareAndSwapObject(this, tailOffset, expect, update);
}
说明:compareAndSetTail也属于CAS函数,也是通过“本地方法”实现的。compareAndSetTail(expect, update)会以原子的方式进行操作,它的作用是判断CLH队列的队尾是不是为expect,是的话,就将队尾设为update。
<3>enq()
enq()在AQS中实现,源码如下:
private Node enq(final Node node) {
for (;;) {
Node t = tail;
if (t == null) { // Must initialize
if (compareAndSetHead(new Node()))
tail = head;
} else {
node.prev = t;
if (compareAndSetTail(t, node)) {
t.next = node;
return t;
}
}
}
}
说明: enq()的作用很简单。如果CLH队列为空,则新建一个CLH表头;然后将node添加到CLH末尾。否则,直接将node添加到CLH末尾。
小结:addWaiter()的作用,就是将当前线程添加到CLH队列中。这就意味着将当前线程添加到等待获取“锁”的等待线程队列中了。
三.acquireQueued()
前面,我们已经将当前线程添加到CLH队列中了。而acquireQueued()的作用就是逐步的去执行CLH队列的线程,如果当前线程获取到了锁,则返回;否则,当前线程进行休眠,直到唤醒并重新获取锁了才返回。
acquireQueued()在AQS中实现,源码如下:
final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
// interrupted表示在CLH队列的调度中,
// “当前线程”在休眠时,有没有被中断过。
boolean interrupted = false;
for (;;) {
// 获取上一个节点。
// node是“当前线程”对应的节点,这里就意味着“获取上一个等待锁的线程”。
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}
说明:acquireQueued()的目的是从队列中获取锁。
2. shouldParkAfterFailedAcquire()
shouldParkAfterFailedAcquire()在AQS中实现,源码如下:
// 返回“当前线程是否应该阻塞”
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
// 前继节点的状态
int ws = pred.waitStatus;
// 如果前继节点是SIGNAL状态,则意味这当前线程需要被unpark唤醒。此时,返回true。
if (ws == Node.SIGNAL)
return true;
// 如果前继节点是“取消”状态,则设置 “当前节点”的 “当前前继节点” 为 “‘原前继节点’的前继节点”。
if (ws > 0) {
do {
node.prev = pred = pred.prev;
} while (pred.waitStatus > 0);
pred.next = node;
} else {
// 如果前继节点为“0”或者“共享锁”状态,则设置前继节点为SIGNAL状态。
compareAndSetWaitStatus(pred, ws, Node.SIGNAL);
}
return false;
}
说明:
(01) 关于waitStatus请参考下表(中扩号内为waitStatus的值),更多关于waitStatus的内容,可以参考前面的Node类的介绍。
CANCELLED[1] -- 当前线程已被取消
SIGNAL[-1] -- “当前线程的后继线程需要被unpark(唤醒)”。一般发生情况是:当前线程的后继线程处于阻塞状态,而当前线程被release或cancel掉,因此需要唤醒当前线程的后继线程。
CONDITION[-2] -- 当前线程(处在Condition休眠状态)在等待Condition唤醒
PROPAGATE[-3] -- (共享锁)其它线程获取到“共享锁”
[0] -- 当前线程不属于上面的任何一种状态。
(02) shouldParkAfterFailedAcquire()通过以下规则,判断“当前线程”是否需要被阻塞。
规则1:如果前继节点状态为SIGNAL,表明当前节点需要被unpark(唤醒),此时则返回true。
规则2:如果前继节点状态为CANCELLED(ws>0),说明前继节点已经被取消,则通过先前回溯找到一个有效(非CANCELLED状态)的节点,并返回false。
规则3:如果前继节点状态为非SIGNAL、非CANCELLED,则设置前继的状态为SIGNAL,并返回false。
如果“规则1”发生,即“前继节点是SIGNAL”状态,则意味着“当前线程”需要被阻塞。接下来会调用parkAndCheckInterrupt()阻塞当前线程,直到当前先被唤醒才从parkAndCheckInterrupt()中返回。
<3>parkAndCheckInterrupt()
parkAndCheckInterrupt()在AQS中实现,源码如下:
private final boolean parkAndCheckInterrupt() {
// 通过LockSupport的park()阻塞“当前线程”。
LockSupport.park(this);
// 返回线程的中断状态。
return Thread.interrupted();
}
说明:parkAndCheckInterrupt()的作用是阻塞当前线程,并且返回“线程被唤醒之后”的中断状态。
它会先通过LockSupport.park()阻塞“当前线程”,然后通过Thread.interrupted()返回线程的中断状态。
这里介绍一下线程被阻塞之后如何唤醒。一般有2种情况:
第1种情况:unpark()唤醒。“前继节点对应的线程”使用完锁之后,通过unpark()方式唤醒当前线程。
第2种情况:中断唤醒。其它线程通过interrupt()中断当前线程。
补充:LockSupport()中的park(),unpark()的作用 和 Object中的wait(),notify()作用类似,是阻塞/唤醒。
它们的用法不同,park(),unpark()是轻量级的,而wait(),notify()是必须先通过Synchronized获取同步锁。
<4>再次tryAcquire()
了解了shouldParkAfterFailedAcquire()和parkAndCheckInterrupt()函数之后。我们接着分析acquireQueued()的for循环部分。
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
说明:
(01) 通过node.predecessor()获取前继节点。predecessor()就是返回node的前继节点,若对此有疑惑可以查看下面关于Node类的介绍。
(02) p == head && tryAcquire(arg)
首先,判断“前继节点”是不是CHL表头。如果是的话,则通过tryAcquire()尝试获取锁。
其实,这样做的目的是为了“让当前线程获取锁”,但是为什么需要先判断p==head呢?理解这个对理解“公平锁”的机制很重要,因为这么做的原因就是为了保证公平性!
(a) 前面,我们在shouldParkAfterFailedAcquire()我们判断“当前线程”是否需要阻塞;
(b) 接着,“当前线程”阻塞的话,会调用parkAndCheckInterrupt()来阻塞线程。当线程被解除阻塞的时候,我们会返回线程的中断状态。而线程被解决阻塞,可能是由于“线程被中断”,也可能是由于“其它线程调用了该线程的unpark()函数”。
(c) 再回到p==head这里。如果当前线程是因为其它线程调用了unpark()函数而被唤醒,那么唤醒它的线程,应该是它的前继节点所对应的线程(关于这一点,后面在“释放锁”的过程中会看到)。 OK,是前继节点调用unpark()唤醒了当前线程!
此时,再来理解p==head就很简单了:当前继节点是CLH队列的头节点,并且它释放锁之后;就轮到当前节点获取锁了。然后,当前节点通过tryAcquire()获取锁;获取成功的话,通过setHead(node)设置当前节点为头节点,并返回。
总之,如果“前继节点调用unpark()唤醒了当前线程”并且“前继节点是CLH表头”,此时就是满足p==head,也就是符合公平性原则的。否则,如果当前线程是因为“线程被中断”而唤醒,那么显然就不是公平了。这就是为什么说p==head就是保证公平性!
小结:acquireQueued()的作用就是“当前线程”会根据公平性原则进行阻塞等待,直到获取锁为止;并且返回当前线程在等待过程中有没有并中断过。
四.selfInterrupt()
selfInterrupt()是AQS中实现,源码如下:
private static void selfInterrupt() {
Thread.currentThread().interrupt();
}
说明:selfInterrupt()的代码很简单,就是“当前线程”自己产生一个中断。但是,为什么需要这么做呢?
这必须结合acquireQueued()进行分析。如果在acquireQueued()中,当前线程被中断过,则执行selfInterrupt();否则不会执行。
在acquireQueued()中,即使是线程在阻塞状态被中断唤醒而获取到cpu执行权利;但是,如果该线程的前面还有其它等待锁的线程,根据公平性原则,该线程依然无法获取到锁。它会再次阻塞! 该线程再次阻塞,直到该线程被它的前面等待锁的线程锁唤醒;线程才会获取锁,然后“真正执行起来”!
也就是说,在该线程“成功获取锁并真正执行起来”之前,它的中断会被忽略并且中断标记会被清除! 因为在parkAndCheckInterrupt()中,我们线程的中断状态时调用了Thread.interrupted()。该函数不同于Thread的isInterrupted()函数,isInterrupted()仅仅返回中断状态,而interrupted()在返回当前中断状态之后,还会清除中断状态。 正因为之前的中断状态被清除了,所以这里需要调用selfInterrupt()重新产生一个中断!
小结:selfInterrupt()的作用就是当前线程自己产生一个中断。
多线程编程-- part5.1 互斥锁之公平锁-获取锁的更多相关文章
- 多线程编程-- part5.1 互斥锁之非公平锁-获取与释放
非公平锁之获取锁 非公平锁和公平锁在获取锁的方法上,流程是一样的:它们的区别主要表现在“尝试获取锁的机制不同”.简单点说,“公平锁”在每次尝试获取锁时,都是采用公平策略(根据等待队列依次排序等待):而 ...
- 多线程编程-- part5.1 互斥锁之公平锁-释放锁
释放公平锁 1.unlock() unlock()在ReentrantLock.java中实现的,源码如下: public void unlock() { sync.release(1); } 说明: ...
- 多线程编程-- part5.1 互斥锁ReentrantLock
ReentrantLock简介 Reentrantlock是一个可重入的互斥锁,又被称为独占锁. Reentrantlock:分为公平锁和非公平锁,它们的区别体现在获取锁的机制上是否公平.“锁”是为了 ...
- python多线程编程(3): 使用互斥锁同步线程
问题的提出 上一节的例子中,每个线程互相独立,相互之间没有任何关系.现在假设这样一个例子:有一个全局的计数num,每个线程获取这个全局的计数,根据num进行一些处理,然后将num加1.很容易写出这样的 ...
- 多线程编程-- part5 锁的种类以及辨析
java中的锁,可以分为同步锁和JUC包中的锁. 同步锁 通过synchronized关键字进行同步,实现对竞争资源的互斥访问的锁,. 原理:对于每一个对象,有且只有一个同步锁,在同一时间点,所有的线 ...
- Cocos2d-X多线程(2) 线程的互斥量std::mutex和线程锁
多个线程同时访问共享资源时,经常会出现冲突等.为了避免这种情况的发生,可以使用互斥量,当一个线程锁住了互斥量后,其他线程必须等待这个互斥量解锁后才能访问它. thread提供了四种不同的互斥量: 1. ...
- Java 中15种锁的介绍:公平锁,可重入锁,独享锁,互斥锁,乐观锁,分段锁,自旋锁等等
Java 中15种锁的介绍 Java 中15种锁的介绍:公平锁,可重入锁,独享锁,互斥锁,乐观锁,分段锁,自旋锁等等,在读很多并发文章中,会提及各种各样锁如公平锁,乐观锁等等,这篇文章介绍各种锁的分类 ...
- Java 种15种锁的介绍:公平锁,可重入锁,独享锁,互斥锁等等…
Java 中15种锁的介绍 1,在读很多并发文章中,会提及各种各样的锁,如公平锁,乐观锁,下面是对各种锁的总结归纳: 公平锁/非公平锁 可重入锁/不可重入锁 独享锁/共享锁 互斥锁/读写锁 乐观锁/悲 ...
- Java中的锁-悲观锁、乐观锁,公平锁、非公平锁,互斥锁、读写锁
总览图 如果文中内容有错误,欢迎指出,谢谢. 悲观锁.乐观锁 悲观锁.乐观锁使用场景是针对数据库操作来说的,是一种锁机制. 悲观锁(Pessimistic Lock):顾名思义,就是很悲观,每次去拿数 ...
随机推荐
- Creator性能优化
性能优化主要这几个方面进行优化:加载优化,渲染优化,内存优化,CPU优化及一些小技巧. 加载优化 图片资源处理:巧用九宫格拉伸来实现资源得复用,如大的纯色背景图,完全可以使用一张小图来进行拉伸获得: ...
- Transfer 穿梭框
基础用法 Transfer 的数据通过 data 属性传入.数据需要是一个对象数组,每个对象有以下属性:key 为数据的唯一性标识,label为显示文本,disabled 表示该项数据是否禁止转移.目 ...
- React的Sass配置
React提供的脚手架creact-react-app创建的工程文件不像vue那种暴露出webpack来,所以添加依赖需要拐个弯. 为了配置sass需要按以下步骤进行: 一.安装sass-loader ...
- pyqt5的QListWidget中设置右键菜单
QListWidget 是继承 QWidget 的, 所以 QListWidget 是有右键菜单的, 从文档上可以找到 QWidget 上有以下两个与右键菜单有关的函数: Qt.ContextMenu ...
- pyqt5 工具栏文字图片同时显示
import sys from PyQt5.QtWidgets import QMainWindow, QTextEdit, QAction, QApplication from PyQt5.QtGu ...
- linux常用命令(10)more命令
more命令,功能类似 cat ,cat命令是整个文件的内容从上到下显示在屏幕上. more会以一页一页的显示方便使用者逐页阅读,而最基本的指令就是按空白键(space)就往下一页显示,按 b 键就会 ...
- java:常见问题(解决获取properties乱码,解决poi自适应宽度)
1.解决获取properties乱码 File cf = new File("D:\\app\\java_jar\\config.properties"); String[] pa ...
- MYSQL中重命名procedure的一种方法
最近有用到对存储过程(procedure)重命名的功能,在网上找了一下资料都没有讲到在mysql中是如何实现的,当然可以删掉再重建,但是应该有别的方法,在"mysql"这个数据库( ...
- 解决应用程序无法正常启动0xc0150002问题(转)
简述:使用VS2008写了一个MFC程序,结果传到别人的机子上(WIN7)出现应用程序正常初始化(0xc0150002)失败的问题.为什么我的机子上可以,而别人的机子上运行不了呢?下面是我找到的一个解 ...
- react正常显示html代码、dangerousSetInnerHTML 笔记
const html =`<h1>今天天色很好</h1>` <div dangerouslySetInnerHTML={{__html:html}}></di ...