西安区域赛 D.Miku and Generals 二分图+背包
Miku and Generals
Describe
“Miku is matchless in the world!” As everyone knows, Nakano Miku is interested in Japanese generals, so Fuutaro always plays a kind of card game about generals with her. In this game, the players pick up cards with generals, but some generals have contradictions and cannot be in the same side. Every general has a certain value of attack power (can be exactly divided by \(100\) ), and the player with higher sum of values will win. In this game all the cards should be picked up.
This day Miku wants to play this game again. However, Fuutaro is busy preparing an exam, so he decides to secretly control the game and decide each card's owner. He wants Miku to win this game so he won't always be bothered, and the difference between their value should be as small as possible. To make Miku happy, if they have the same sum of values, Miku will win. He must get a plan immediately and calculate it to meet the above requirements, how much attack value will Miku have?
As we all know, when Miku shows her loveliness, Fuutaro's IQ will become \(0\) . So please help him figure out the answer right now!
Input
Each test file contains several test cases. In each test file:
The first line contains a single integer \(T(1 \le T \le 10)\)which is the number of test cases.
For each test case, the first line contains two integers: the number of generals \(N(2 \le N \le 200)\)and thenumber of pairs of generals that have contradictions \(M(0 \le M \le 200)\).
The second line contains \(N\) integers, and the iii-th integer is \(c_i\), which is the attack power value of the iii-th general \((0 \le c_i \le 5\times 10^4)\).
The following \(M\) lines describe the contradictions among generals. Each line contains two integers AAA and BBB , which means general AAA and BBB cannot be on the same side \((1 \le A , B \le N)\).
The input data guarantees that the solution exists.
Output
For each test case, you should print one line with your answer.
Hint
In sample test case, Miku will get general 2 and 3 .
样例输入
1
4 2
1400 700 2100 900
1 3
3 4
样例输出
2800
题意
给你n个数,把他们分成两组使得差值最小,求较大那组权值和。有些数不能在一起,保证有解。
题解
先二分图染色,也可以并查集(我考场用并查集写的,结果WA到结束,所以对并查集产生了阴影qwq)。
然后就是一个比较裸的可行性背包,背包容量为sum/2。
如果不会背包,可以先做这道相似的背包题:https://www.luogu.org/problemnew/show/P1282
(我一开始统计方案数,一直WA,原来是方案数报爆int 了,真是伤心,还是fwl大佬看出来的)
代码
#include<bits/stdc++.h>
using namespace std;
#define N 205
#define M 205
#define V 50050
int n,m,a[N],f[N],val[N][3],bh[N],dp[2][V];
int tot,last[N];
struct Edge{int from,to,s;}edges[M<<1];
template<typename T> void read(T &x)
{
int k=0; char c=getchar();
x=0;
while(!isdigit(c)&&c!=EOF)k^=c=='-',c=getchar();
if (c==EOF)exit(0);
while(isdigit(c))x=x*10+c-'0',c=getchar();
x=k?-x:x;
}
void AddEdge(int x,int y)
{
edges[++tot]=Edge{x,y,last[x]};
last[x]=tot;
}
void dfs(int x,int id)
{
f[x]=1;
bh[x]=id;
for(int i=last[x];i;i=edges[i].s)
{
Edge &e=edges[i];
if (!f[e.to])dfs(e.to,-id);
}
}
void work()
{
memset(f,0,sizeof(f));
memset(val,0,sizeof(val));
memset(dp,0,sizeof(dp));
memset(last,0,sizeof(last));//
tot=0;
int sum=0,num=0;
read(n); read(m);
for(int i=1;i<=n;i++)read(a[i]),a[i]/=100,sum+=a[i];
for(int i=1;i<=m;i++)
{
int x,y;
read(x); read(y);
AddEdge(x,y);
AddEdge(y,x);
}
for(int i=1;i<=n;i++)if (!f[i])dfs(i,++num);
for(int i=1;i<=n;i++)val[abs(bh[i])][bh[i]/abs(bh[i])+1]+=a[i];
int selfsum=sum/2,k=0;
dp[k][0]=1;
for(int i=1;i<=num;i++)
{
k^=1;
for(int j=selfsum;j>=0;j--)
{
if (j-val[i][0]>=0&&dp[1-k][j-val[i][0]]>0) dp[k][j]=1;
else
if (j-val[i][2]>=0&&dp[1-k][j-val[i][2]]>0) dp[k][j]=1;
else dp[k][j]=0;
if (i==num&&dp[k][j]>0){printf("%d\n",max(j,(sum-j))*100);return;}
}
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("aa.in","r",stdin);
#endif
int q;read(q); while(q--)work();}
西安区域赛 D.Miku and Generals 二分图+背包的更多相关文章
- 2017西安区域赛A / UVALive - 8512 线段树维护线性基合并
题意:给定\(a[1...n]\),\(Q\)次询问求\(A[L...R]\)的异或组合再或上\(K\)的最大值 本题是2017的西安区域赛A题,了解线性基之后你会发现这根本就是套路题.. 只要用线段 ...
- ACM-ICPC 2019 西安邀请赛 D.Miku and Generals(二分图+可行性背包)
“Miku is matchless in the world!” As everyone knows, Nakano Miku is interested in Japanese generals, ...
- 2019 ACM/ICPC Asia Regional shanxia D Miku and Generals (二分图黑白染色+01背包)
Miku is matchless in the world!” As everyone knows, Nakano Miku is interested in Japanese generals, ...
- UVALive 8519 Arrangement for Contests 2017西安区域赛H 贪心+线段树优化
题意 等价于给一个数列,每次对一个长度为$K$的连续区间减一 为最多操作多少次 题解: 看样例猜的贪心,10分钟敲了个线段树就交了... 从1开始,找$[i,i+K]$区间的最小值,然后区间减去最小值 ...
- UVALive 8513 lovers 2017 西安区域赛 B 贪心+multiset
UVALive 8513 有2种人,每个人有自己的权值$A_i$ $B_i$ 当$A_i + B_i >=K$时 两个人可以配对 问最多多少人可以配对 解法 : 把$/{ A_i /}$ 排序 ...
- 2014年西安区域赛的几道水题(A. F. K)
A . 问一组数能否全部被3整除 K. S1 = A, S2 = B, Si = |Si-1 - Si-2|; 一直循环问, 出现了多少不同的数: 多模拟几组数, 可以发现和辗转相除法有很大关系 ...
- 14西安区域赛C - The Problem Needs 3D Arrays
最大密度子图裸题,详情请见胡博涛论文: https://wenku.baidu.com/view/986baf00b52acfc789ebc9a9.html 不加当前弧优化t到死= = //#prag ...
- 2017 ICPC西安区域赛 A - XOR (线段树并线性基)
链接:https://nanti.jisuanke.com/t/A1607 题面: Consider an array AA with n elements . Each of its eleme ...
- 2019 ICPC 上海区域赛总结
2019上海区域赛现场赛总结 补题情况(以下通过率为牛客提交): 题号 标题 已通过代码 通过率 我的状态 A Mr. Panda and Dominoes 点击查看 5/29 未通过 B Prefi ...
随机推荐
- 【线性代数】7-1:线性变换思想(The Idea of a Linear Transformation)
title: [线性代数]7-1:线性变换思想(The Idea of a Linear Transformation) categories: Mathematic Linear Algebra k ...
- jmeter怎么上传图片
1.使用Fiddler抓取上传图片的接口地址,将地址接口按规定粘贴到Jmeter的HTTP请求内(复制粘贴注意空格)(我已经有HTTP默认请求页,所以这里不需要配置) 2.HTTP请求页选择[高级-客 ...
- Java的Lambda表达式
Java的Lambda表达式 1. 什么是Lambda表达式 简单的说,Lambda表达式就是匿名方法.Lambda表达式让程序员能够使用更加简洁的代码,但是同样也使代码的可读性比较差. Lambda ...
- SSH交互式脚本StrictHostKeyChecking选项 benchmode=yes
SSH 公钥检查是一个重要的安全机制,可以防范中间人劫持等黑客攻击.但是在特定情况下,严格的 SSH 公钥检查会破坏一些依赖 SSH 协议的自动化任务,就需要一种手段能够绕过 SSH 的公钥检查. 什 ...
- CIEDE2000色差公式相关
色差公式发展的三个重要的阶段:1976年以前(CIELAB和CIELUV的采用).1976年到2001年(CIEDE2000色差公式的推荐).2001年以后. 国际照明委员会1998年成立了技术委员会 ...
- OOM异常的发生原因
一,jvm内存区域 1,程序计数器 一块很小的内存空间,作用是当前线程所执行的字节码的行号指示器. 2,java栈 与程序计数器一样,java栈(虚拟机栈)也是线程私有的,其生命周期与线程相同.通常存 ...
- 16 Flutter仿京东商城项目 跳转到搜索页面实现搜索功能 以及搜索筛选
ProductList.dart import 'package:flutter/material.dart'; import '../services/ScreenAdaper.dart'; imp ...
- Redis查询_Tips
基础知识——介绍 Redis简介 REmote Dictionary Server(Redis) 是一个由Salvatore Sanfilippo写的key-value存储系统. Redis是一个完全 ...
- VituralBox从零搭建基于CentOS 7(64位)的Kubernetes+docker集群
1. 下载CentOS 7官方minimal镜像 2. 安装VituralBox(Windows 10 64位) 3. 安装Git for windows(Windows 10 64位) 4. 安装V ...
- spring mvc 返回JSON数据
servlet相关XML配置 <!--这个不启用会报错--><mvc:annotation-driven /> <bean class="org.springf ...