西安区域赛 D.Miku and Generals 二分图+背包
Miku and Generals
Describe
“Miku is matchless in the world!” As everyone knows, Nakano Miku is interested in Japanese generals, so Fuutaro always plays a kind of card game about generals with her. In this game, the players pick up cards with generals, but some generals have contradictions and cannot be in the same side. Every general has a certain value of attack power (can be exactly divided by \(100\) ), and the player with higher sum of values will win. In this game all the cards should be picked up.
This day Miku wants to play this game again. However, Fuutaro is busy preparing an exam, so he decides to secretly control the game and decide each card's owner. He wants Miku to win this game so he won't always be bothered, and the difference between their value should be as small as possible. To make Miku happy, if they have the same sum of values, Miku will win. He must get a plan immediately and calculate it to meet the above requirements, how much attack value will Miku have?
As we all know, when Miku shows her loveliness, Fuutaro's IQ will become \(0\) . So please help him figure out the answer right now!
Input
Each test file contains several test cases. In each test file:
The first line contains a single integer \(T(1 \le T \le 10)\)which is the number of test cases.
For each test case, the first line contains two integers: the number of generals \(N(2 \le N \le 200)\)and thenumber of pairs of generals that have contradictions \(M(0 \le M \le 200)\).
The second line contains \(N\) integers, and the iii-th integer is \(c_i\), which is the attack power value of the iii-th general \((0 \le c_i \le 5\times 10^4)\).
The following \(M\) lines describe the contradictions among generals. Each line contains two integers AAA and BBB , which means general AAA and BBB cannot be on the same side \((1 \le A , B \le N)\).
The input data guarantees that the solution exists.
Output
For each test case, you should print one line with your answer.
Hint
In sample test case, Miku will get general 2 and 3 .
样例输入
1
4 2
1400 700 2100 900
1 3
3 4
样例输出
2800
题意
给你n个数,把他们分成两组使得差值最小,求较大那组权值和。有些数不能在一起,保证有解。
题解
先二分图染色,也可以并查集(我考场用并查集写的,结果WA到结束,所以对并查集产生了阴影qwq)。
然后就是一个比较裸的可行性背包,背包容量为sum/2。
如果不会背包,可以先做这道相似的背包题:https://www.luogu.org/problemnew/show/P1282
(我一开始统计方案数,一直WA,原来是方案数报爆int 了,真是伤心,还是fwl大佬看出来的)
代码
#include<bits/stdc++.h>
using namespace std;
#define N 205
#define M 205
#define V 50050
int n,m,a[N],f[N],val[N][3],bh[N],dp[2][V];
int tot,last[N];
struct Edge{int from,to,s;}edges[M<<1];
template<typename T> void read(T &x)
{
int k=0; char c=getchar();
x=0;
while(!isdigit(c)&&c!=EOF)k^=c=='-',c=getchar();
if (c==EOF)exit(0);
while(isdigit(c))x=x*10+c-'0',c=getchar();
x=k?-x:x;
}
void AddEdge(int x,int y)
{
edges[++tot]=Edge{x,y,last[x]};
last[x]=tot;
}
void dfs(int x,int id)
{
f[x]=1;
bh[x]=id;
for(int i=last[x];i;i=edges[i].s)
{
Edge &e=edges[i];
if (!f[e.to])dfs(e.to,-id);
}
}
void work()
{
memset(f,0,sizeof(f));
memset(val,0,sizeof(val));
memset(dp,0,sizeof(dp));
memset(last,0,sizeof(last));//
tot=0;
int sum=0,num=0;
read(n); read(m);
for(int i=1;i<=n;i++)read(a[i]),a[i]/=100,sum+=a[i];
for(int i=1;i<=m;i++)
{
int x,y;
read(x); read(y);
AddEdge(x,y);
AddEdge(y,x);
}
for(int i=1;i<=n;i++)if (!f[i])dfs(i,++num);
for(int i=1;i<=n;i++)val[abs(bh[i])][bh[i]/abs(bh[i])+1]+=a[i];
int selfsum=sum/2,k=0;
dp[k][0]=1;
for(int i=1;i<=num;i++)
{
k^=1;
for(int j=selfsum;j>=0;j--)
{
if (j-val[i][0]>=0&&dp[1-k][j-val[i][0]]>0) dp[k][j]=1;
else
if (j-val[i][2]>=0&&dp[1-k][j-val[i][2]]>0) dp[k][j]=1;
else dp[k][j]=0;
if (i==num&&dp[k][j]>0){printf("%d\n",max(j,(sum-j))*100);return;}
}
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("aa.in","r",stdin);
#endif
int q;read(q); while(q--)work();}
西安区域赛 D.Miku and Generals 二分图+背包的更多相关文章
- 2017西安区域赛A / UVALive - 8512 线段树维护线性基合并
题意:给定\(a[1...n]\),\(Q\)次询问求\(A[L...R]\)的异或组合再或上\(K\)的最大值 本题是2017的西安区域赛A题,了解线性基之后你会发现这根本就是套路题.. 只要用线段 ...
- ACM-ICPC 2019 西安邀请赛 D.Miku and Generals(二分图+可行性背包)
“Miku is matchless in the world!” As everyone knows, Nakano Miku is interested in Japanese generals, ...
- 2019 ACM/ICPC Asia Regional shanxia D Miku and Generals (二分图黑白染色+01背包)
Miku is matchless in the world!” As everyone knows, Nakano Miku is interested in Japanese generals, ...
- UVALive 8519 Arrangement for Contests 2017西安区域赛H 贪心+线段树优化
题意 等价于给一个数列,每次对一个长度为$K$的连续区间减一 为最多操作多少次 题解: 看样例猜的贪心,10分钟敲了个线段树就交了... 从1开始,找$[i,i+K]$区间的最小值,然后区间减去最小值 ...
- UVALive 8513 lovers 2017 西安区域赛 B 贪心+multiset
UVALive 8513 有2种人,每个人有自己的权值$A_i$ $B_i$ 当$A_i + B_i >=K$时 两个人可以配对 问最多多少人可以配对 解法 : 把$/{ A_i /}$ 排序 ...
- 2014年西安区域赛的几道水题(A. F. K)
A . 问一组数能否全部被3整除 K. S1 = A, S2 = B, Si = |Si-1 - Si-2|; 一直循环问, 出现了多少不同的数: 多模拟几组数, 可以发现和辗转相除法有很大关系 ...
- 14西安区域赛C - The Problem Needs 3D Arrays
最大密度子图裸题,详情请见胡博涛论文: https://wenku.baidu.com/view/986baf00b52acfc789ebc9a9.html 不加当前弧优化t到死= = //#prag ...
- 2017 ICPC西安区域赛 A - XOR (线段树并线性基)
链接:https://nanti.jisuanke.com/t/A1607 题面: Consider an array AA with n elements . Each of its eleme ...
- 2019 ICPC 上海区域赛总结
2019上海区域赛现场赛总结 补题情况(以下通过率为牛客提交): 题号 标题 已通过代码 通过率 我的状态 A Mr. Panda and Dominoes 点击查看 5/29 未通过 B Prefi ...
随机推荐
- 7.26T3小游戏
小游戏 题目描述 有一个简单的小游戏.游戏的主人公是一个勇士,他要穿过一片黑森林,去 解救公主.黑森林的地图可以用一张 V 个点.E 条边的无向图来描述,起点是 1 号点,终点是 V 号点.勇士从起点 ...
- JAVA导入支持类
导入支持类(可以是JDK基础类或者自己编写的类),可以供本类调用方法和属性. java中import用法: 1.单类型导入(single-type-import),例如import java.io.F ...
- 客户端配置代理服务实现yum上外网
vi /etc/profile http_proxy=http://172.20.188.193:3128/https_proxy=https://172.20.188.193:3128/expor ...
- <JavaScript> 匿名函数和闭包的区别
匿名函数:没有名字的函数:并没有牵扯到应用其他函数的变量问题.仅仅是没有名字. 定义方式: 1,var A = function(){ }; 2, (function (x,y){ })(2,3); ...
- onNewIntent
当Activity不是Standard模式,并且被复用的时候,会触发onNewIntent(Intent intent) 这个方法,一般用来获取新的Intent传递的数据 我们一般会把MainAcit ...
- mfc递归删除文件夹
BOOL myDeleteDirectory(CString directory_path) //删除一个文件夹下的所有内容 { BOOL ret=TRUE; CFileFind finder; CS ...
- iptables之精髓(一)
防火墙相关概念 从逻辑上讲.防火墙可以大体分为主机防火墙和网络防火墙. 主机防火墙:针对于单个主机进行防护. 网络防火墙:往往处于网络入口或边缘,针对于网络入口进行防护,服务于防火墙背后的本地局域网. ...
- app怎么获取package与active name
1.aapt dump badging apk名称 2.adb logcat | grep START 或者 adb shell "logcat | grep START" 然后在 ...
- 使用super函数----增量重写普通方法和构造方法
使用super函数----增量重写普通方法和构造方法 在子类中如果重写了超类的方法,通常需要在子类方法中调用超类的同名方法,也就是说,重写超类的方法,实际上应该是一种增量的重写方式,子类方法会在超类的 ...
- 在线word转html
http://www.docpe.com/word/word-to-html.aspx