题意

给定n个结点的树,每条边有边权,有m个询问,每个询问给一个\(q_i\)输出树上有多少点对的简单路径上最大的边权不超过\(q_i\)。

分析

用并查集维护点集,同时维护大小。

将所有边按边权排序,考虑每次从小到大加边,图中经过当前边的所有路径一定是以当前边的边权为最大值的,用并查集维护下图中每个联通块的大小,经过当前边的路径数即为\(sz[find(u)]*sz[find(v)]\)。然后前缀和一下就可以\(O(1)\)询问了。

Code

#include<bits/stdc++.h>
#define fi first
#define se second
#define lson l,mid,p<<1
#define rson mid+1,r,p<<1|1
#define pb push_back
#define ll long long
using namespace std;
const int inf=1e9;
const int mod=1e9+7;
const int maxn=2e5+10;
int n,m;
int f[maxn];
ll ans[maxn],sz[maxn];
int find(int k){
if(k==f[k]) return k;
else return f[k]=find(f[k]);
}
struct ppo{
int u,v,w;
bool operator<(const ppo &r) const{
return w<r.w;
}
}a[maxn];
int main(){
//ios::sync_with_stdio(false);
//freopen("in","r",stdin);
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) f[i]=i,sz[i]=1;
for(int i=1;i<n;i++){
scanf("%d%d%d",&a[i].u,&a[i].v,&a[i].w);
}
sort(a+1,a+n);
for(int i=1;i<n;i++){
int rx=find(a[i].u),ry=find(a[i].v);
ans[a[i].w]+=sz[rx]*sz[ry];
f[rx]=ry;
sz[ry]+=sz[rx];
}
for(int i=1;i<=2e5;i++) ans[i]+=ans[i-1];
while(m--){
int x;scanf("%d",&x);
printf("%lld ",ans[x]);
}
return 0;
}

codeforces1213G Path Queries 并查集的更多相关文章

  1. CodeForces - Path Queries (并查集+离线查询)

    题目:https://vjudge.net/contest/323699#problem/A 题意:给你一棵树,然后有m个查询,每次查询问一条路径最大边小于给定查询的数量 思路:首先我们看到,我们其实 ...

  2. Codeforces Round #582 (Div. 3) G. Path Queries (并查集计数)

    题意:给你带边权的树,有\(m\)次询问,每次询问有多少点对\((u,v)\)之间简单路径上的最大边权不超过\(q_i\). 题解:真的想不到用最小生成树来写啊.... 我们对边权排序,然后再对询问的 ...

  3. 2019.01.22 zoj3583 Simple Path(并查集+枚举)

    传送门 题意简述:给出一张图问不在从sss到ttt所有简单路径上的点数. 思路: 枚举删去每个点然后把整张图用并查集处理一下,同时不跟sss和ttt在同一个连通块的点就是满足要求的点(被删去的不算). ...

  4. UVALive - 5031 Graph and Queries (并查集+平衡树/线段树)

    给定一个图,支持三种操作: 1.删除一条边 2.查询与x结点相连的第k大的结点 3.修改x结点的权值 解法:离线倒序操作,平衡树or线段树维护连通块中的所有结点信息,加个合并操作就行了. 感觉线段树要 ...

  5. 【CF938G】Shortest Path Queries(线段树分治,并查集,线性基)

    [CF938G]Shortest Path Queries(线段树分治,并查集,线性基) 题面 CF 洛谷 题解 吼题啊. 对于每个边,我们用一个\(map\)维护它出现的时间, 发现询问单点,边的出 ...

  6. Codeforces 938G Shortest Path Queries [分治,线性基,并查集]

    洛谷 Codeforces 分治的题目,或者说分治的思想,是非常灵活多变的. 所以对我这种智商低的选手特别不友好 脑子不好使怎么办?多做题吧-- 前置知识 线性基是你必须会的,不然这题不可做. 推荐再 ...

  7. HDU 3726 Graph and Queries 平衡树+前向星+并查集+离线操作+逆向思维 数据结构大综合题

    Graph and Queries Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  8. 关于并查集的路径压缩(Path Compress)优化

    之前在CSDN看到一篇很受欢迎的讲解并查集的博文,其中自然用到了路径压缩: int pre[1000]; int find(int x){ int root = x; while(pre[root]! ...

  9. Codeforces Round #582 (Div. 3)-G. Path Queries-并查集

    Codeforces Round #582 (Div. 3)-G. Path Queries-并查集 [Problem Description] 给你一棵树,求有多少条简单路径\((u,v)\),满足 ...

随机推荐

  1. Intercity Travelling CodeForces - 1009E (组合计数)

    大意: 有一段$n$千米的路, 每一次走$1$千米, 每走完一次可以休息一次, 每连续走$x$次, 消耗$a[1]+...+a[x]$的能量. 休息随机, 求消耗能量的期望$\times 2^{n-1 ...

  2. Mysql分表和分区的区别、分库和分表区别

    一,什么是mysql分表,分区 什么是分表,从表面意思上看呢,就是把一张表分成N多个小表,具体请看:mysql分表的3种方法. 什么是分区,分区呢就是把一张表的数据分成N多个区块,这些区块可以在同一个 ...

  3. B-JUI文档、下载

    概述 特别说明 本文档仅适用于最新版的B-JUI,网站首页或下载页可以查看B-JUI的最后更新时间. B-JUI前端管理框架适用于快速开发各类WEB管理系统,可与任意后端程序(java.php..ne ...

  4. vs2019 扩展工具

    这里只是做个记录,没啥技术含量 本人代码上有些强迫症,所以我的本地代码一定不可以丢,之前用vs2013开始,就安装了localhistory这个插件,十分方便,觉得不用了,清了即可,也不占地方. 但是 ...

  5. Base64编码为什么会使数据量变大

    现在工作中把视频转成base64发现数据量过大无法下载. 1.为什么base64编码会使数据量变大呢? Base64编码的思想是是采用64个基本的ASCII码字符对数据进行重新编码.它将需要编码的数据 ...

  6. XML-RPC-3XML-RPC 与 XML-RPC 服务器类

    http://codeigniter.org.cn/user_guide/libraries/xmlrpc.html XML-RPC 与 XML-RPC 服务器类 CodeIgniter 的 XML- ...

  7. 内置函数----format

    说明: 1. 函数功能将一个数值进行格式化显示. 2. 如果参数format_spec未提供,则和调用str(value)效果相同,转换成字符串格式化. >>> format(3.1 ...

  8. 安装theano踩过的坑(gpu)

    参考 http://deeplearning.net/software/theano/install.html TensorFlow出了点问题 python3.7的环境 pip安装 keras已经安装 ...

  9. kNN(K-Nearest Neighbor)最邻近规则分类(转)

    KNN最邻近规则,主要应用领域是对未知事物的识别,即判断未知事物属于哪一类,判断思想是,基于欧几里得定理,判断未知事物的特征和哪一类已知事物的的特征最接近: K最近邻(k-Nearest Neighb ...

  10. 数据库 'C:\Program Files\Microsoft SQL Server\MSSQL10_50.MSSQLSERVER\MSSQL\DATA\test1.mdf' 已存在。请选择其他数据库

    关于asp.net编译中出现 数据库 'C:\Program Files\Microsoft SQL Server\MSSQL10_50.MSSQLSERVER\MSSQL\DATA\test1.md ...