【线性代数】7-3:对角化和伪逆(Diagonalization and the Pseudoinverse)
title: 【线性代数】7-3:对角化和伪逆(Diagonalization and the Pseudoinverse)
categories:
- Mathematic
- Linear Algebra
keywords: - Diagonalization
- Pseudoinverse
toc: true
date: 2017-12-06 14:03:08
Abstract: 本文以线性变换的角度重新理解矩阵变换的原理,以对角化和SVD作为主要的案例
Keywords: Diagonalization,Pseudoinverse
开篇废话
傻子不是生出来的,是教出来的,如果一个人从小没人教他如何看问题如何思考,或者他自己也不愿意去思考,别人说什么他都相信,那么这个人将会变成一个温和的劳动者,这个道理我们老一辈革命家们都明白,枪杆子笔杆子就可万世而为君,看个头条都能热血沸腾的人统治成本极低。
Diagonalization and the Pseudoinverse
首先我们要回顾下,并且强调下昨天讲的内容,就是线性变换对应的矩阵,对于不同空间相互变换,知道空间是不能确定矩阵的,还要确定基和相互关系,光知道基也没用,比如求导和求积分的例子告诉我们,必须要知道他们之间的计算关系,或者叫做原始空的基向量线性变换到目标空间后的向量是啥才能确定矩阵A(上一篇的
【线性代数】7-3:对角化和伪逆(Diagonalization and the Pseudoinverse)的更多相关文章
- 学习笔记DL007:Moore-Penrose伪逆,迹运算,行列式,主成分分析PCA
Moore-Penrose伪逆(pseudoinverse). 非方矩阵,逆矩阵没有定义.矩阵A的左逆B求解线性方程Ax=y.两边左乘左逆B,x=By.可能无法设计唯一映射将A映射到B.矩阵A行数大于 ...
- matlab:inv,pinv逆与伪逆
对于方阵A,如果为非奇异方阵,则存在逆矩阵inv(A)对于奇异矩阵或者非方阵,并不存在逆矩阵,但可以使用pinv(A)求其伪逆 inv: inv(A)*B实际上可以写成A\BB*inv(A)实 ...
- 【线性代数】6-2:对角化(Diagonalizing a Matrix)
title: [线性代数]6-2:对角化(Diagonalizing a Matrix) categories: Mathematic Linear Algebra keywords: Eigenva ...
- Codeforces 947E Perpetual Subtraction (线性代数、矩阵对角化、DP)
手动博客搬家: 本文发表于20181212 09:37:21, 原地址https://blog.csdn.net/suncongbo/article/details/84962727 呜啊怎么又是数学 ...
- MIT线性代数:22.对角化和A的幂
- 【线性代数】Linear Algebra Big Picture
Abstract: 通过学习MIT 18.06课程,总结出的线性代数的知识点相互依赖关系,后续博客将会按照相应的依赖关系进行介绍.(2017-08-18 16:28:36) Keywords: Lin ...
- Other-Website-Contents.md
title: 本站目录 categories: Other sticky: 10 toc: true keywords: 机器学习基础 深度学习基础 人工智能数学知识 机器学习入门 date: 999 ...
- 灰度图像--图像分割 阈值处理之OTSU阈值
学习DIP第55天 转载请标明本文出处:***http://blog.csdn.net/tonyshengtan ***,出于尊重文章作者的劳动,转载请标明出处!文章代码已托管,欢迎共同开发:http ...
- 《Deep Learning》第二章 线性代数 笔记
第二章 线性代数 2.1 名词 标量(scalar).向量(vector).矩阵(matrix).张量(tensor) 2.2 矩阵和向量相乘 1. 正常矩阵乘法: 2. 向量点积: 3. Hadam ...
随机推荐
- c++/c在两个文件公用一个变量
在一个cpp文件定义一个文件 在另一个文件extern+定义
- [Python爬虫] 使用 Beautiful Soup 4 快速爬取所需的网页信息
[Python爬虫] 使用 Beautiful Soup 4 快速爬取所需的网页信息 2018-07-21 23:53:02 larger5 阅读数 4123更多 分类专栏: 网络爬虫 版权声明: ...
- Sparse PCA 稀疏主成分分析
Sparse PCA 稀疏主成分分析 2016-12-06 16:58:38 qilin2016 阅读数 15677 文章标签: 统计学习算法 更多 分类专栏: Machine Learning ...
- LinearSearch Java
Java LinearSearch /** * <html> * <body> * <P> Copyright 1994-2018 JasonInternation ...
- 一个因MySQL大小写敏感导致的问题
做一个积极的人 编码.改bug.提升自己 我有一个乐园,面向编程,春暖花开! 00 MYSQL对大小写敏感 见字如面,见标题知内容.你有遇到过因为MYSQL对大小写敏感而被坑的体验吗? 之前看过阿里巴 ...
- HTTP协议 学习
HTTP是hypertext transfer protocol(超文本传输协议)的简写,它是TCP/IP协议的一个应用层协议,用于定义WEB浏览器与WEB服务器之间交换数据的过程.客户端连上web服 ...
- java 框架-缓冲-Redis 2Jedis操作
https://www.cnblogs.com/wlandwl/p/redis.html Redis介绍及Jedis基础操作 1.Redis简介 Redis 是一个开源(BSD许可)的,内存中的数 ...
- 【es6】将2个数组合并为一个数组
//第一种 一个数组中的值为key 一个数组中的值为value let arr1 = ['内存','颜色','尺寸']; let arr2 = [1,2,3]; let temp = arr1.map ...
- [书籍翻译] 《JavaScript并发编程》 第二章 JavaScript运行模型
本文是我翻译<JavaScript Concurrency>书籍的第二章 JavaScript运行模型,该书主要以Promises.Generator.Web workers等技术来讲解J ...
- iOS自定义一个仿网易左右滑动切换页面框架
FSScrollContentView github:https://github.com/shunFSKi/FSScrollContentView 这是本人在整理项目时抽离了业务代码整理封装的一个通 ...