Pseudoprime numbers

Descriptions

费马定理指出,对于任意的素数 p 和任意的整数 a > 1,满足 ap = a (mod p) 。也就是说,a的 p 次幂除以 p 的余数等于 a 。p 的某些 (但不是很多) 非素数的值,被称之为以 a 为底的伪素数,对于某个 a 具有该特性。并且,某些 Carmichael 数,对于全部的 a 来说,是以 a为底的伪素数。

给定 2 < p ≤ 1000000000 且 1 < a < p ,判断 p 是否为以 a 为底的伪素数。

输入

输入包含多个测试用例,以 "0 0" 表示输入结束。每个测试用例,由包含 p 和 a 的一行组成。

输出

对于每个测试用例,如果 p 是以 a 为底的伪素数,则输出 "yes",否则输出 "no" 。

示例输入

3 2
10 3
341 2
341 3
1105 2
1105 3
0 0

示例输出

no
no
yes
no
yes
yes

题目链接

https://vjudge.net/problem/POJ-3641

简单的说满足两个条件 

1、p不是素数

2、a的p次幂除以p的余数等于a

就输出yes

否则输出no 

AC代码

#include <iostream>
#include <cstdio>
#include <fstream>
#include <algorithm>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <string>
#include <cstring>
#include <map>
#include <stack>
#include <set>
#include <sstream>
#define IOS ios_base::sync_with_stdio(0); cin.tie(0);
#define Mod 1000000007
#define eps 1e-6
#define ll long long
#define INF 0x3f3f3f3f
#define MEM(x,y) memset(x,y,sizeof(x))
#define Maxn 100000+100
using namespace std;
ll a,p;
ll mod;
ll qpow(ll a, ll n)//计算a^n % mod
{
ll re = ;
while(n)
{
if(n & )//判断n的最后一位是否为1
re = (re * a) % mod;
n >>= ;//舍去n的最后一位
a = (a * a) % mod;//将a平方
}
return re % mod;
}
int main()
{
while(cin>>p>>a,a+p)
{
ll sum=;
for(ll i=; i*i<p; i++)//判断是否是素数
{
if(p%i==)
sum++;
}
if(sum==)//p是素数
cout<<"no"<<endl;
else//p不是素数
{
mod=p;
if(qpow(a,p)==a)//a的p次幂除以p的余数是否等于a
cout<<"yes"<<endl;
else
cout<<"no"<<endl;
}
}
return ;
}

【POJ - 3641】Pseudoprime numbers (快速幂)的更多相关文章

  1. poj 3641 Pseudoprime numbers 快速幂+素数判定 模板题

    Pseudoprime numbers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7954 Accepted: 3305 D ...

  2. poj 3641 Pseudoprime numbers

    题目连接 http://poj.org/problem?id=3641 Pseudoprime numbers Description Fermat's theorem states that for ...

  3. POJ 3641 Pseudoprime numbers (数论+快速幂)

    题目链接:POJ 3641 Description Fermat's theorem states that for any prime number p and for any integer a ...

  4. POJ3641 Pseudoprime numbers(快速幂+素数判断)

    POJ3641 Pseudoprime numbers p是Pseudoprime numbers的条件: p是合数,(p^a)%p=a;所以首先要进行素数判断,再快速幂. 此题是大白P122 Car ...

  5. poj 3641 Pseudoprime numbers(快速幂)

    Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a ...

  6. poj 3641 Pseudoprime numbers Miller_Rabin测素裸题

    题目链接 题意:题目定义了Carmichael Numbers 即 a^p % p = a.并且p不是素数.之后输入p,a问p是否为Carmichael Numbers? 坑点:先是各种RE,因为po ...

  7. POJ 3641 Pseudoprime numbers (miller-rabin 素数判定)

    模板题,直接用 /********************* Template ************************/ #include <set> #include < ...

  8. HDU 3641 Pseudoprime numbers(快速幂)

    Pseudoprime numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11336   Accepted: 4 ...

  9. POJ 1995:Raising Modulo Numbers 快速幂

    Raising Modulo Numbers Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 5532   Accepted: ...

  10. pojPseudoprime numbers (快速幂)

    Description Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a ...

随机推荐

  1. 微信小程序审核不通过的解决方法

    前言 近来,微信小程序一直活跃在开发者的眼球中.很多开发者都投身微信小程序的开发中,而这些开发者,总是需要面对最后一道难题:如何以一种优雅的姿势来通过微信官方的审核.本文基于几天前提交审核的一次总结, ...

  2. CodeForces 834C - The Meaningless Game | Codeforces Round #426 (Div. 2)

    /* CodeForces 834C - The Meaningless Game [ 分析,数学 ] | Codeforces Round #426 (Div. 2) 题意: 一对数字 a,b 能不 ...

  3. C++关键字——register

    register修饰符暗示编译程序相应的变量将被频繁地使用,如果可能的话,应将其保存在CPU的寄存器中,以加快其存储速度.例如下面的内存块拷贝代码, #ifdef NOSTRUCTASSIGN mem ...

  4. Educational Codeforces Round 13 D. Iterated Linear Function 逆元+公式+费马小定理

    D. Iterated Linear Function time limit per test 1 second memory limit per test 256 megabytes input s ...

  5. Codeforces Round #369 (Div. 2) C 基本dp+暴力

    C. Coloring Trees time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...

  6. [Linux]ubuntu更改国内源

    转自: https://blog.csdn.net/qq_35451572/article/details/79516563 推荐快速更新国内源 https://blog.csdn.net/qq_35 ...

  7. 阿里云修改主机名hostname

    一.永久修改主机名的方法(针对于普通的服务器) 1.通过hostname命令修改. [root@izwz9f7pm0tw36neb1j7gmz ~]# hostname node1 修改完之后发现主机 ...

  8. javaScript基础用Number()把其它类型转换为Number类型

    一:基本类型 字符串 把字符串转换为数字,只要字符串中包含任意一个非有效数字字符(第一个点除外)结果都是NaN,空字符串会变为数字零 console.log(Number("12.5&quo ...

  9. Leetcode题目136.只出现一次的数字(简单)

    ---恢复内容开始--- 题目描述: 给定一个非空整数数组,除了某个元素只出现一次以外,其余每个元素均出现两次.找出那个只出现了一次的元素. 说明: 你的算法应该具有线性时间复杂度. 你可以不使用额外 ...

  10. 爬虫实践——数据存储到Excel中

    在进行爬虫实践时,我已经爬取到了我需要的信息,那么最后一个问题就是如何把我所爬到的数据存储到Excel中去,这是我没有学习过的知识. 如何解决这个问题,我选择先百度查找如何解决这个问题. 百度查到的方 ...