292D - Connected Components

D. Connected Components

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

We already know of the large corporation where Polycarpus works as a system administrator. The computer network there consists of n computers and m cables that connect some pairs of computers. In other words, the computer network can be represented as some non-directed graph with n nodes and m edges. Let's index the computers with integers from 1 to n, let's index the cables with integers from 1 to m.

Polycarpus was given an important task — check the reliability of his company's network. For that Polycarpus decided to carry out a series of k experiments on the computer network, where the i-th experiment goes as follows:

  1. Temporarily disconnect the cables with indexes from l**i to r**i, inclusive (the other cables remain connected).
  2. Count the number of connected components in the graph that is defining the computer network at that moment.
  3. Re-connect the disconnected cables with indexes from l**i to r**i (that is, restore the initial network).

Help Polycarpus carry out all experiments and for each print the number of connected components in the graph that defines the computer network through the given experiment. Isolated vertex should be counted as single component.

Input

The first line contains two space-separated integers n, m (2 ≤ n ≤ 500; 1 ≤ m ≤ 104) — the number of computers and the number of cables, correspondingly.

The following m lines contain the cables' description. The i-th line contains space-separated pair of integers x**i, y**i (1 ≤ x**i, y**i ≤ n; x**i ≠ y**i) — the numbers of the computers that are connected by the i-th cable. Note that a pair of computers can be connected by multiple cables.

The next line contains integer k (1 ≤ k ≤ 2·104) — the number of experiments. Next k lines contain the experiments' descriptions. The i-th line contains space-separated integers l**i, r**i (1 ≤ l**i ≤ r**i ≤ m) — the numbers of the cables that Polycarpus disconnects during the i-th experiment.

Output

Print k numbers, the i-th number represents the number of connected components of the graph that defines the computer network during the i-th experiment.

Examples

input

Copy

6 51 25 42 33 13 661 32 51 55 52 43 3

output

Copy

456342

题意:

给你一个含有n个点,m个边的无向图。

以及q个询问

每一个询问,给定一个l和r,代表在原本的图中,删除e[l]~e[r] 这些边,

求剩下的图中联通快的个数。

思路:

我们建立2*m个并查集,

前m个是从1到m个边依次加入时的图网络联通情况,用并查集数组a表示

后m个维护反过来,即第m个到第1个边以此加入时的图网络联通情况。用并查集数组b来表示

对于每一个询问:

我们将a[l-1]和b[r+1]两个并查集合并,即可求得图中联通快的个数。

时间复杂度为\(O(n*m)\)

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
#define du3(a,b,c) scanf("%d %d %d",&(a),&(b),&(c))
#define du2(a,b) scanf("%d %d",&(a),&(b))
#define du1(a) scanf("%d",&(a));
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {a %= MOD; if (a == 0ll) {return 0ll;} ll ans = 1; while (b) {if (b & 1) {ans = ans * a % MOD;} a = a * a % MOD; b >>= 1;} return ans;}
void Pv(const vector<int> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%d", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}}
void Pvl(const vector<ll> &V) {int Len = sz(V); for (int i = 0; i < Len; ++i) {printf("%lld", V[i] ); if (i != Len - 1) {printf(" ");} else {printf("\n");}}} inline void getInt(int* p);
const int maxn = 10010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int n, m;
struct dsu
{
int fa[505];
void init()
{
repd(i, 1, n)
{
fa[i] = i;
}
}
int findpar(int x)
{
if (fa[x] == x)
{
return x;
} else {
return fa[x] = findpar(fa[x]);
}
}
void mg(int a, int b)
{
a = findpar(a);
b = findpar(b);
if (a != b)
{
fa[a] = b;
}
}
int getans()
{
int res = 0;
repd(i, 1, n)
{
if (fa[i] == i)
{
res++;
}
}
return res;
}
} a[maxn], b[maxn];
dsu t1, t2;
pii c[maxn];
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout); while (~du2(n, m))
{
a[0].init();
b[m + 1].init();
t1.init();
repd(i, 1, m)
{
du2(c[i].fi, c[i].se);
t1.mg(c[i].fi, c[i].se);
a[i] = t1;
}
t1.init();
for (int i = m; i >= 1; --i)
{
t1.mg(c[i].fi, c[i].se);
b[i] = t1;
}
int q;
scanf("%d", &q);
int l, r;
while (q--)
{
du2(l, r);
t2 = a[l - 1];
repd(i, 1, n)
{
// chu(t2.findpar(i));
// chu(b[r + 1].findpar(i));
t2.mg(t2.findpar(i), b[r + 1].findpar(i));
}
printf("%d\n", t2.getans() );
} } return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

D. Connected Components Croc Champ 2013 - Round 1 (并查集+技巧)的更多相关文章

  1. Croc Champ 2013 - Round 1 E. Copying Data 分块

    E. Copying Data time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...

  2. Croc Champ 2013 - Round 1 E. Copying Data 线段树

    题目链接: http://codeforces.com/problemset/problem/292/E E. Copying Data time limit per test2 secondsmem ...

  3. Croc Champ 2013 - Round 2 C. Cube Problem

    问满足a^3 + b^3 + c^3 + n = (a+b+c)^3 的 (a,b,c)的个数 可化简为 n = 3*(a + b) (a + c) (b + c) 于是 n / 3 = (a + b ...

  4. Educational Codeforces Round 37 E. Connected Components?(图论)

    E. Connected Components? time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  5. Educational Codeforces Round 37 (Rated for Div. 2) E. Connected Components? 图论

    E. Connected Components? You are given an undirected graph consisting of n vertices and edges. Inste ...

  6. [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  7. PTA Strongly Connected Components

    Write a program to find the strongly connected components in a digraph. Format of functions: void St ...

  8. LeetCode Number of Connected Components in an Undirected Graph

    原题链接在这里:https://leetcode.com/problems/number-of-connected-components-in-an-undirected-graph/ 题目: Giv ...

  9. [Redux] Using withRouter() to Inject the Params into Connected Components

    We will learn how to use withRouter() to inject params provided by React Router into connected compo ...

随机推荐

  1. C#使用CUDA

    随着信息处理的爆炸增长,传统使用CPU计算已经无法满足计算作业增长的需求,GPU的出现为批量作业提供了新的契机.GPU计算拥有很类库,比如CUDA.OpenCL等,但是可以发现CUDA是其中相对比较成 ...

  2. 在Ubuntu上安装Intellij IDEA并创建桌面快捷方式

    环境信息 版本号 Ubuntu 18.04 LTS Intellij IDEA 2019.1.3 1.首先从官网获取安装包 官方下载地址传送门 然后我就在下载目录下得到了tar.gz的包 2.接下来开 ...

  3. 【log4j】的学习和理解 + 打印所有 SQL

    log4j 1.2 学习和理解 + 打印所有 SQL 一.基本资料 官方文档:http://logging.apache.org/log4j/1.2/manual.html(理解基本概念和其他) lo ...

  4. kindeditor 在JSP 中上传文件的配置

    1.将kindeditor,jsp,lib目录下的jar文件放到工程的lib目录下 2.将admin-login.jsp,upload_json.jsp,复制到admin的files目录下 3.复制以 ...

  5. 2019SDN第四次作业

    一.配置java环境 输入命令sudo gedit ~/.bashrc 添加如下内容 二.启动并安装插件 cd distribution-karaf-0.4.4-Beryllium-SR4/bin/ ...

  6. icell更改用户管理员

    管理员页面是http://127.0.0.1:8080/PORTAL/tsysLoginController/admin超级管理员是http://127.0.0.1:8080/PORTAL/tsysL ...

  7. lg 1478

    好多天没碰代码了,感觉忘得差不多了,没有学习感觉罪恶深重,从今天起开始补题啊啊! 简单零一背包,套模板就行. #include<bits/stdc++.h> using namespace ...

  8. QT QcustomPlot的使用(二)

    在QcustomPlot中,给横纵坐标添加箭头的方法 //在末尾添加箭头 customPlot->xAxis->setUpperEnding(QCPLineEnding::esSpikeA ...

  9. macos catalina安装python3

    之前跟着教程用brow安装了python3,后来发现电脑上有三个版本的python,头大. 于是用brew uninstall --force python3卸掉了python3 看到现在有两个版本 ...

  10. while循环,格式化输出,运算符及编码初识

    一.while循环 1.基本循环(死循环) while 条件: 循环体 2.使用while计数 count = 0 # 数字里面非零的都为True while True: count = count ...