[HNOI2019]多边形[二叉树建模、组合计数]
题意
分析
不难发现终态一定是 \([2,n-2]\) 中的每个点都与 \(n\) 连边。
关于凸多边形的划分问题,可以将它看作一棵二叉树:每个树点可以看做点可以看做边。
本题中看做点来处理,并将与 \(n\) 号点相连的所有节点看作一次分割(这些点之间一定有连边),每个分割出的区间(也是一棵树)里的根连到树的根。
对于第一问,答案为 \(n-3\) 条边中未连接 \(n\) 号点的边数。容易构造一种方案达到下界:
对于树的根,不同的子树每一步有且仅有一个位置满足可以旋转。这个点没有和 \(n\) 相连,且与 \(n\) 的连线 和 1 条线段相交。
所以对每个非根节点有: \(f_u=(s_u-1)!\prod \frac{f_v}{s_v!}\)
对于根节点有:\(f_{rt}=s_{rt}!\prod \frac{f_v}{s_v!}\)
所以对于每个非根节点,在 \(f_{rt}\) 中的贡献都是 \(\frac{(s_u-1)!}{s_u!}=\frac{1}{s_u}\)
所以答案可以写成:\(\frac{ans1!}{\prod\limits_{(l,r)\in E,r \ne n}(r-l-1)}\)
对于 \(m\) 个拓展状态,可以考虑删边和加边,\(a,b,c,d\) 中一定满足 \(b\) 是 \(c\) 所有出边中的次小值, \(d\) 是 \(c\) 所有出边中的最大值,所以每次确定 \(b,d\) 就可以 \(O(1)\) 了。
复杂度 \(O(n+m)\) 。
代码
#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
#define rep(i, a, b) for(int i = a; i <= b; ++i)
inline int gi() {
int x = 0,f = 1;
char ch = getchar();
while(!isdigit(ch)) { if(ch == '-') f = -1; ch = getchar();}
while(isdigit(ch)) { x = (x << 3) + (x << 1) + ch - 48; ch = getchar();}
return x * f;
}
template <typename T> inline bool Max(T &a, T b){return a < b ? a = b, 1 : 0;}
template <typename T> inline bool Min(T &a, T b){return a > b ? a = b, 1 : 0;}
const int N = 1e5 + 7, mod = 1e9 + 7;
int type, n, ans1, m, ans2 = 1;
int inv[N], L[N], R[N], L2[N];
void upd(int l, int r, int v) {
if(r == n) return;
if(v == 1)
ans2 = (LL) ans2 * inv[r - l - 1] % mod * (++ans1) % mod;
else
ans2 = (LL) ans2 * (r - l - 1) % mod * inv[ans1--] % mod;
}
short num[100];
void print(int x) {
short len = 0;
do {
num[len++] = x % 10;
x /= 10;
}while(x);
for(short i = len - 1; ~i; --i) putchar(num[i] + '0');
}
int main() {
type = gi(), n = gi();
inv[1] = 1;
rep(i, 2, n) inv[i] = (LL) (mod - mod / i) * inv[mod % i] % mod;
R[1] = n, L[n] = 1;
rep(i, 2, n - 1) L[i] = i - 1, L2[i] = i, R[i] = i + 1;
rep(i, 1, n - 3) {
int x = gi(), y = gi();
Max(R[x], y);
if(x < L[y]) {
L2[y] = L[y], L[y] = x;
}else Min(L2[y], x);
upd(x, y, 1);
}
m = gi();
print(ans1); if(type) putchar(' '), print(ans2); puts("");
while(m--) {
int a = gi(), c = gi(), b = L2[c], d = R[c];
upd(a, c, -1);
upd(b, d, 1);
print(ans1); if(type) putchar(' '), print(ans2); puts("");
upd(b, d, -1);
upd(a, c, 1);
}
return 0;
}
[HNOI2019]多边形[二叉树建模、组合计数]的更多相关文章
- 长沙理工大学第十二届ACM大赛-重现赛 大家一起来数二叉树吧 (组合计数)
大意: 求n结点m叶子二叉树个数. 直接暴力, $dp[i][j][k][l]$表示第$i$层共$j$节点, 共$k$叶子, 第$i$层有$l$个叶子的方案数, 然后暴力枚举第$i$层出度为1和出度为 ...
- 【BZOJ5491】[HNOI2019]多边形(模拟,组合计数)
[HNOI2019]多边形(模拟,组合计数) 题面 洛谷 题解 突然特别想骂人,本来我考场现切了的,结果WA了几个点,刚刚拿代码一看有个地方忘记取模了. 首先发现终止态一定是所有点都向\(n\)连边( ...
- FJOI2020 的两道组合计数题
最近细品了 FJOI2020 的两道计数题,感觉抛开数据范围不清还卡常不谈里面的组合计数技巧还是挺不错的.由于这两道题都基于卡特兰数的拓展,所以我们把它们一并研究掉. 首先是 D1T3 ,先给出简要题 ...
- [总结]数论和组合计数类数学相关(定理&证明&板子)
0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. ...
- bzoj 2281 [Sdoi2011]黑白棋(博弈+组合计数)
黑白棋(game) [问题描述] 小A和小B又想到了一个新的游戏. 这个游戏是在一个1*n的棋盘上进行的,棋盘上有k个棋子,一半是黑色,一半是白色. 最左边是白色棋子,最右边是黑色棋子,相邻的棋子颜色 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [分治FFT 组合计数 | 多项式求逆]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- BZOJ 4555: [Tjoi2016&Heoi2016]求和 [FFT 组合计数 容斥原理]
4555: [Tjoi2016&Heoi2016]求和 题意:求\[ \sum_{i=0}^n \sum_{j=0}^i S(i,j)\cdot 2^j\cdot j! \\ S是第二类斯特林 ...
- 【BZOJ5323】[JXOI2018]游戏(组合计数,线性筛)
[BZOJ5323][JXOI2018]游戏(组合计数,线性筛) 题面 BZOJ 洛谷 题解 显然要考虑的位置只有那些在\([l,r]\)中不存在任意一个约数的数. 假设这样的数有\(x\)个,那么剩 ...
- 【BZOJ5305】[HAOI2018]苹果树(组合计数)
[BZOJ5305][HAOI2018]苹果树(组合计数) 题面 BZOJ 洛谷 题解 考虑对于每条边计算贡献.每条边的贡献是\(size*(n-size)\). 对于某个点\(u\),如果它有一棵大 ...
随机推荐
- Spring集成ElasticSearch搜索引擎
目录 前期安装 Maven支持库安装 添加log4j的配置文件 创建Client客户端 实现增删改查以及符合查询 实现查询数据 实现添加数据 实现删除数据 实现修改数据 实现复合查询数据 Elasti ...
- .net 前端gb2312编码,后台获取参数乱码(因为表单提交的时候是utf-8编码 则在后台读取参数时会出现乱码)
在表单中设置编码 ' accept-charset="utf-8" '即可: <form id="login_submit" action=" ...
- MySQL Innodb数据库误删ibdata1后MySQL数据库的恢复案例
上周,以前公司的同事朋友找我帮忙,看看能否帮忙恢复一个MySQL 数据库,具体情况为:数据库版本为MySQL 5.6(具体版本不清楚),也不清楚具体的数据库引擎; 没有数据库备份,只剩下数据库下面 ...
- idea2018版tomcat基本配置
前言 在配置tomcat之前,要先创建一个javaweb的工程 打开idea的主界面,在菜单中点击File,出现以下的图 点击选择 Application Server 点击选择 Tomcat Ser ...
- SQL Server 2012 手动安装帮助文档+排错
逆天SQL Server 2012装的不要不要的,最后发现...竟然没帮助文档...汗啊!原来它跟vs一样要自己装帮助文档...好吧,官网一下载,妹的...报错...然后就让我们还原这个安装过程以及逆 ...
- 反射生成 INSERT 多个对象的 SQL 语句(批量插入)
+ View code private static void insertObject(List<?> objectList) throws IllegalAccessException ...
- hivesql优化的深入解析
转载:https://www.csdn.net/article/2015-01-13/2823530 一个Hive查询生成多个Map Reduce Job,一个Map Reduce Job又有Map, ...
- SSM框架—环境搭建(MyEclipse+Tomcat+MAVEN+SVN)
1.JDK的安装 首先下载JDK,这个从sun公司官网可以下载,根据自己的系统选择64位还是32位,安装过程就是next一路到底.安装完成之后当然要配置环境变量了. 1.1新建变量名:JAVA_HOM ...
- c/c++ vector,map,set,智能指针,综合运用的小例子
标准库,智能指针,综合运用的小例子 功能说明:查询单词在文件中出现的次数,如果在同一行出现多次,只算一次. 比如查询单词:你好 输出的结果: 你好 出现了:2次 (行号 2)xxxxxxx 你好 (行 ...
- LeetCode算法题-Maximum Depth of Binary Tree
这是悦乐书的第164次更新,第166篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第23题(顺位题号是104).给定二叉树,找到它的最大深度.最大深度是从根节点到最远叶节 ...