In functional analysis, several types of convergence are defined, namely,

  • strong convergence for elements in normed linear space.
  • weak convergence for elements in normed linear space, which is defined via the assistance of the dual space.
  • weak-* convergence for linear functionals in the strong dual space of a normed linear space.
  • pointwise convergence for linear operators.

This post summarizes their definitions and shows the differences.

  1. Definition (Strong convergence) Let \(X\) be a normed linear space and \((x_l)_{l \in \mathbb{N}}\) be a sequence in \(X\). Then \((x_l)_{l \in \mathbb{N}}\) converges (strongly) to \(x \in X\) if

    \[
    \lim_{l \rightarrow \infty} \norm{x_l - x}_X = 0.
    \]

    It can be seen that the strong convergence is just the convergence with respect to the “distance between points”, or more generally, the so-called “norm” defined for a linear space, which is what we have been familiar with in fundamental calculus.

  2. Definition (Weak convergence) Let \(X\) be a Banach space and \(X’\) be its dual space. The sequence \((x_l)_{l \in \mathbb{N}}\) in \(X\) converges weakly to \(x \in X\) if

    \[
    \lim_{l \rightarrow \infty} \abs{f(x_l) - f(x)} = 0 \quad (\forall f \in X’).
    \]

    We can see that the convergence here is called weak, because it is not directly based on point distance in the original space \(X\), but the evaluation of an arbitrary functional in the dual space on the sequence.

    It is easy and natural to see that the strong convergence implies weak convergence because of the continuity of the linear functional \(f \in X’\):

    \[
    \abs{f(x_l) - f(x)} = \abs{f(x_l - x)} \leq \norm{f}_{X’} \norm{x_l - x}_X.
    \]

  3. Definition (Pointwise convergence) Let \(X\) and \(Y\) be normed spaces. The sequence of bounded linear operators \((T_l)_{l \in \mathbb{N}} \subset L(X, Y)\) converges to \(T \in L(X, Y)\) if

    \[
    \lim_{l \rightarrow \infty} \norm{T_l x - T x}_Y = 0 \quad (\forall x \in X).
    \]

    The pointwise convergence is used to describe the convergence of operators at each point in \(X\). A more strict convergence for operators is uniform convergence, which means the convergence speeds of \((T_l x)_{l \in \mathbb{N}}\) at different points \(x\) in \(X\) are comparable. It is also easy to see that the strong convergence of \((T_l)_{l \in \mathbb{N}}\) implies pointwise convergence.

  4. Definition (Weak-* convergence) Let \(X_s’\) be the strong dual space of the normed linear space \(X\). The linear functional sequence \((T_l)_{l \in \mathbb{N}}\) converges to \(T\) in \(X_s’\) if

    \[
    \lim_{l \rightarrow \infty} \abs{T_l x - T x} = 0 \quad (\forall x \in X).
    \]

    The weak-* convergence can be considered as a special case of pointwise convergence with the difference that the linear operators become linear functionals and the dual space \(X’\) of \(X\) is assigned with the strong topology.

Comparison of several types of convergence的更多相关文章

  1. Acquiring Heap Dumps

      Acquiring Heap Dumps HPROF Binary Heap Dumps Get Heap Dump on an OutOfMemoryError One can get a HP ...

  2. chromium之scoped_ptr

    看看怎么使用 // Scopers help you manage ownership of a pointer, helping you easily manage the // a pointer ...

  3. Jerry的ABAP原创技术文章合集

    我之前发过三篇和ABAP相关的文章: 1. Jerry的ABAP, Java和JavaScript乱炖 这篇文章包含我多年来在SAP成都研究院使用ABAP, Java和JavaScript工作过程中的 ...

  4. C#值类型和引用类型与Equals方法

    1. C#的值类型和引用类型 C#的对象里面有两种类型,一个是引用类型,一个是值类型,值类型和引用类型的具体分类可以看下面的分类.   在C#中,不管是引用类型还是值类型,他们都隐式继承Object类 ...

  5. In-App Purchase Programming Guide----(二) ---- Designing Your App’s Products

    Designing Your App’s Products A product is something you want to sell in your app’s store. You creat ...

  6. Python Cheatsheet

    Comprehensive Python Cheatsheet Download text file, Buy PDF, Fork me on GitHub or Check out FAQ. Con ...

  7. "SQL Server does not handle comparison of NText, Text, Xml, or Image data types."

    "SQL Server does not handle comparison of NText, Text, Xml, or Image data types." sql2000 ...

  8. IComparable<T> Vs. IComparer<T> System.Comparison<T>

    Well they are not quite the same thing as IComparer<T> is implemented on a type that is capabl ...

  9. MOOCULUS微积分-2: 数列与级数学习笔记 5. Another comparison test

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

随机推荐

  1. PDB文件详解

    原文地址:http://blog.csdn.net/feihe0755/article/details/54233714 PDB文件的介绍 PDB(Program Data Base),意即程序的基本 ...

  2. hibernate框架学习之持久化对象OID

    持久化对象唯一标识——OID 1)数据库中使用主键可以区分两个对象是否相同2)Java语言中使用对象的内存地址区分对象是否相同3)Hibernate中使用OID区分对象是否相同Hibernate认为每 ...

  3. NOI2019 SX 模拟赛 no.5

    Mas 的童年 题目描述:不知道传送门有没有用? 反正就是对于每个前缀序列求一个断点,使得断点左右两个区间的 分别的异或和 的和最大 分析 jzoj 原题? 但是我 TM 代码没存账号也过期了啊! 然 ...

  4. FFmpeg Commits on May 30, 2017 remove libschroedinger & libnut

    FFmpeg Commits on May 30, 2017 https://github.com/FFmpeg/FFmpeg/commit/220b24c7c97dc033ceab1510549f6 ...

  5. Media Query-响应式布局

    做响应式网站的时候,一定要在页面头部加入如下的声明: <meta name="viewport" content="width=device-width, init ...

  6. Ionic-轮播图ion-slide-box

    官方用法介绍:http://www.ionic.wang/js_doc-index-id-44.html 用法 <ion-slide-box> <ion-slide> < ...

  7. mgo mode说明

    mgo 是 MongoDB 的 Golang 驱动. 连接池 我们通过 Dial 函数创建一个新的 session: session, err := mgo.Dial(url) 创建的 session ...

  8. 修改更新源sources.list,提高软件下载安装速度(2017.04.05)

    1.切换到root用户(如果已经是root用户就直接看第二步) dnt@HackerKali:~$ su 密码: 2.用文本编辑器打开sources.list,手动添加下面的更新源 root@Hack ...

  9. [其它]安装ios12 developer beta 3出错

    ios11设备升级到ios12有时候会出现 安装ios12 developer beta 3出错 提示.此时有一种可能就是,你手机或者ipad空间不足2G多(因为ios12是2.13G) 仅作为记录使 ...

  10. 加载UI工程的csb,以及纹理缓存情况

    以plist+PNG模式加载csb,并播放UI工程做的动画,用法如下 local Layer = cc.CSLoader:createNode("res/yk/interface/loadi ...