In functional analysis, several types of convergence are defined, namely,

  • strong convergence for elements in normed linear space.
  • weak convergence for elements in normed linear space, which is defined via the assistance of the dual space.
  • weak-* convergence for linear functionals in the strong dual space of a normed linear space.
  • pointwise convergence for linear operators.

This post summarizes their definitions and shows the differences.

  1. Definition (Strong convergence) Let \(X\) be a normed linear space and \((x_l)_{l \in \mathbb{N}}\) be a sequence in \(X\). Then \((x_l)_{l \in \mathbb{N}}\) converges (strongly) to \(x \in X\) if

    \[
    \lim_{l \rightarrow \infty} \norm{x_l - x}_X = 0.
    \]

    It can be seen that the strong convergence is just the convergence with respect to the “distance between points”, or more generally, the so-called “norm” defined for a linear space, which is what we have been familiar with in fundamental calculus.

  2. Definition (Weak convergence) Let \(X\) be a Banach space and \(X’\) be its dual space. The sequence \((x_l)_{l \in \mathbb{N}}\) in \(X\) converges weakly to \(x \in X\) if

    \[
    \lim_{l \rightarrow \infty} \abs{f(x_l) - f(x)} = 0 \quad (\forall f \in X’).
    \]

    We can see that the convergence here is called weak, because it is not directly based on point distance in the original space \(X\), but the evaluation of an arbitrary functional in the dual space on the sequence.

    It is easy and natural to see that the strong convergence implies weak convergence because of the continuity of the linear functional \(f \in X’\):

    \[
    \abs{f(x_l) - f(x)} = \abs{f(x_l - x)} \leq \norm{f}_{X’} \norm{x_l - x}_X.
    \]

  3. Definition (Pointwise convergence) Let \(X\) and \(Y\) be normed spaces. The sequence of bounded linear operators \((T_l)_{l \in \mathbb{N}} \subset L(X, Y)\) converges to \(T \in L(X, Y)\) if

    \[
    \lim_{l \rightarrow \infty} \norm{T_l x - T x}_Y = 0 \quad (\forall x \in X).
    \]

    The pointwise convergence is used to describe the convergence of operators at each point in \(X\). A more strict convergence for operators is uniform convergence, which means the convergence speeds of \((T_l x)_{l \in \mathbb{N}}\) at different points \(x\) in \(X\) are comparable. It is also easy to see that the strong convergence of \((T_l)_{l \in \mathbb{N}}\) implies pointwise convergence.

  4. Definition (Weak-* convergence) Let \(X_s’\) be the strong dual space of the normed linear space \(X\). The linear functional sequence \((T_l)_{l \in \mathbb{N}}\) converges to \(T\) in \(X_s’\) if

    \[
    \lim_{l \rightarrow \infty} \abs{T_l x - T x} = 0 \quad (\forall x \in X).
    \]

    The weak-* convergence can be considered as a special case of pointwise convergence with the difference that the linear operators become linear functionals and the dual space \(X’\) of \(X\) is assigned with the strong topology.

Comparison of several types of convergence的更多相关文章

  1. Acquiring Heap Dumps

      Acquiring Heap Dumps HPROF Binary Heap Dumps Get Heap Dump on an OutOfMemoryError One can get a HP ...

  2. chromium之scoped_ptr

    看看怎么使用 // Scopers help you manage ownership of a pointer, helping you easily manage the // a pointer ...

  3. Jerry的ABAP原创技术文章合集

    我之前发过三篇和ABAP相关的文章: 1. Jerry的ABAP, Java和JavaScript乱炖 这篇文章包含我多年来在SAP成都研究院使用ABAP, Java和JavaScript工作过程中的 ...

  4. C#值类型和引用类型与Equals方法

    1. C#的值类型和引用类型 C#的对象里面有两种类型,一个是引用类型,一个是值类型,值类型和引用类型的具体分类可以看下面的分类.   在C#中,不管是引用类型还是值类型,他们都隐式继承Object类 ...

  5. In-App Purchase Programming Guide----(二) ---- Designing Your App’s Products

    Designing Your App’s Products A product is something you want to sell in your app’s store. You creat ...

  6. Python Cheatsheet

    Comprehensive Python Cheatsheet Download text file, Buy PDF, Fork me on GitHub or Check out FAQ. Con ...

  7. "SQL Server does not handle comparison of NText, Text, Xml, or Image data types."

    "SQL Server does not handle comparison of NText, Text, Xml, or Image data types." sql2000 ...

  8. IComparable<T> Vs. IComparer<T> System.Comparison<T>

    Well they are not quite the same thing as IComparer<T> is implemented on a type that is capabl ...

  9. MOOCULUS微积分-2: 数列与级数学习笔记 5. Another comparison test

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

随机推荐

  1. tomcat 嵌入式

    背景 开源世界真是有意思,竟然还有这种玩法.以前一直想bs程序如何像cs程序作为安装包形式,这个就是个解决方案. 知识点 将tomcat嵌入到主程序中进行运行,而不是像以前将一个web项目copy到t ...

  2. LabVIEW--为设备添加配置文件.ini

    需求:我同一个程序下载到两台机器人上,有些参数是不一样的,比如说服务器的ID或者端口,以及存放文件的位置,如果我每次下载之前改程序的话就非常麻烦了(虽然在程序里面是作为全局变量来存的),不利于后期的更 ...

  3. linux下export命令添加、删除环境变量(转载)

    转自:http://blog.csdn.net/shenshendeai/article/details/49794699 export命令 功能说明:设置或显示环境变量. 语 法:export [- ...

  4. 如何在同一台电脑上使用两个github账户(亲测有效)

    1 前言 由于有两个github账号,要在同一台电脑上同步代码,需要给每一个账号添加一个SSH public key,此时推送时git push origin,不知道是哪个账号的远程仓库名称,所以需要 ...

  5. CSS 重置默认样式

    1. 概述 1.1 说明 css重置样式主要是为了让各个浏览器的CSS样式有一个统一的基准,使HTML元素样式在跨浏览器时有一致性的效果. 备注:浏览器的兼容问题,不同浏览器对有些标签的默认值是不同的 ...

  6. Inspector did not run successfully.

    装虚拟机,卡在这个报错1天了, server没有问题,其余所有的agent都不能运行. 这部分没有日志,只有单纯的报错信息,omg,百度.bing一顿骚操作,还是没有解决问题. 因为默认安装jdk1. ...

  7. c# 操作Word总结(车)

    在医疗管理系统中为保存患者的体检和治疗记录,方便以后的医生或其他人查看.当把数据保存到数据库中,需要新建很多的字段,而且操作很繁琐,于是想到网页的信息创建到一个word文本中,在显示的时,可以在线打开 ...

  8. Confluence 6 MBeans

    你可以使用下面的 Confluence MBeans  来实时查看你 Confluence 实例运行的实时信息. CacheStatistics 这个 MBean 显示了 Confluence 有关的 ...

  9. Confluence 6 外部小工具在其他应用中设置可信关系

    为了在你的 Confluence 中与其他应用建立外部小工具,我们建议你在 2 个应用之间设置 OAuth 或者信任的应用连接关系.在这个例子中,外部应用为小工具的服务器(服务器提供者)和 Confl ...

  10. bat命令行实现全盘遍历搜索文件

    背景:当想要查找一个文件时,记得放在某个盘里.手动去遍历时感觉好心累,找了半天还是没有找着(虽然win有自带的搜索框,但是看着进度条的速度,我便果断的点了取消).基于这个情况,所以写了脚本满足自身查找 ...