In functional analysis, several types of convergence are defined, namely,

  • strong convergence for elements in normed linear space.
  • weak convergence for elements in normed linear space, which is defined via the assistance of the dual space.
  • weak-* convergence for linear functionals in the strong dual space of a normed linear space.
  • pointwise convergence for linear operators.

This post summarizes their definitions and shows the differences.

  1. Definition (Strong convergence) Let \(X\) be a normed linear space and \((x_l)_{l \in \mathbb{N}}\) be a sequence in \(X\). Then \((x_l)_{l \in \mathbb{N}}\) converges (strongly) to \(x \in X\) if

    \[
    \lim_{l \rightarrow \infty} \norm{x_l - x}_X = 0.
    \]

    It can be seen that the strong convergence is just the convergence with respect to the “distance between points”, or more generally, the so-called “norm” defined for a linear space, which is what we have been familiar with in fundamental calculus.

  2. Definition (Weak convergence) Let \(X\) be a Banach space and \(X’\) be its dual space. The sequence \((x_l)_{l \in \mathbb{N}}\) in \(X\) converges weakly to \(x \in X\) if

    \[
    \lim_{l \rightarrow \infty} \abs{f(x_l) - f(x)} = 0 \quad (\forall f \in X’).
    \]

    We can see that the convergence here is called weak, because it is not directly based on point distance in the original space \(X\), but the evaluation of an arbitrary functional in the dual space on the sequence.

    It is easy and natural to see that the strong convergence implies weak convergence because of the continuity of the linear functional \(f \in X’\):

    \[
    \abs{f(x_l) - f(x)} = \abs{f(x_l - x)} \leq \norm{f}_{X’} \norm{x_l - x}_X.
    \]

  3. Definition (Pointwise convergence) Let \(X\) and \(Y\) be normed spaces. The sequence of bounded linear operators \((T_l)_{l \in \mathbb{N}} \subset L(X, Y)\) converges to \(T \in L(X, Y)\) if

    \[
    \lim_{l \rightarrow \infty} \norm{T_l x - T x}_Y = 0 \quad (\forall x \in X).
    \]

    The pointwise convergence is used to describe the convergence of operators at each point in \(X\). A more strict convergence for operators is uniform convergence, which means the convergence speeds of \((T_l x)_{l \in \mathbb{N}}\) at different points \(x\) in \(X\) are comparable. It is also easy to see that the strong convergence of \((T_l)_{l \in \mathbb{N}}\) implies pointwise convergence.

  4. Definition (Weak-* convergence) Let \(X_s’\) be the strong dual space of the normed linear space \(X\). The linear functional sequence \((T_l)_{l \in \mathbb{N}}\) converges to \(T\) in \(X_s’\) if

    \[
    \lim_{l \rightarrow \infty} \abs{T_l x - T x} = 0 \quad (\forall x \in X).
    \]

    The weak-* convergence can be considered as a special case of pointwise convergence with the difference that the linear operators become linear functionals and the dual space \(X’\) of \(X\) is assigned with the strong topology.

Comparison of several types of convergence的更多相关文章

  1. Acquiring Heap Dumps

      Acquiring Heap Dumps HPROF Binary Heap Dumps Get Heap Dump on an OutOfMemoryError One can get a HP ...

  2. chromium之scoped_ptr

    看看怎么使用 // Scopers help you manage ownership of a pointer, helping you easily manage the // a pointer ...

  3. Jerry的ABAP原创技术文章合集

    我之前发过三篇和ABAP相关的文章: 1. Jerry的ABAP, Java和JavaScript乱炖 这篇文章包含我多年来在SAP成都研究院使用ABAP, Java和JavaScript工作过程中的 ...

  4. C#值类型和引用类型与Equals方法

    1. C#的值类型和引用类型 C#的对象里面有两种类型,一个是引用类型,一个是值类型,值类型和引用类型的具体分类可以看下面的分类.   在C#中,不管是引用类型还是值类型,他们都隐式继承Object类 ...

  5. In-App Purchase Programming Guide----(二) ---- Designing Your App’s Products

    Designing Your App’s Products A product is something you want to sell in your app’s store. You creat ...

  6. Python Cheatsheet

    Comprehensive Python Cheatsheet Download text file, Buy PDF, Fork me on GitHub or Check out FAQ. Con ...

  7. "SQL Server does not handle comparison of NText, Text, Xml, or Image data types."

    "SQL Server does not handle comparison of NText, Text, Xml, or Image data types." sql2000 ...

  8. IComparable<T> Vs. IComparer<T> System.Comparison<T>

    Well they are not quite the same thing as IComparer<T> is implemented on a type that is capabl ...

  9. MOOCULUS微积分-2: 数列与级数学习笔记 5. Another comparison test

    此课程(MOOCULUS-2 "Sequences and Series")由Ohio State University于2014年在Coursera平台讲授. PDF格式教材下载 ...

随机推荐

  1. [1]字符串按中文符占3位进行指定长度剪切[2]Double类型截取指定长度(指定长度=整数位+小数位)

    /** 将中文字符串剪切为在当前db2(编码GBK)中所占用的长度*/ public String cutStringForDb2(String src,Integer size) { int len ...

  2. [jquery]为jQuery.ajax添加onprogress事件

    原理: 给XMLHttpRequest对象的upload属性绑定onprogress方法监听上传过程 var xhr = new XMLHttpRequest();  xhr.upload.onpro ...

  3. Spring 5 WebFlux

    作者: 一字马胡 转载标志 [2017-11-26] 更新日志 日期 更新内容 备注 2017-11-26 新建文章 Spring 5 WebFlux demo Reactor Spring 5的一大 ...

  4. Python下划线的详解

    本文将讨论Python中下划线(_)字符的使用方法.我们将会看到,正如Python中的很多事情,下划线的不同用法大多数(并非所有)只是常用惯例而已. 单下划线(_) 通常情况下,会在以下3种场景中使用 ...

  5. javaweb web.xml文件详解

    web.xml文件详解 前言:一般的web工程中都会用到web.xml,web.xml主要用来配置,可以方便的开发web工程.web.xml主要用来配置Filter.Listener.Servlet等 ...

  6. IOS 将状态栏改为白色

    1.将 View controller-based status bar appearance 删除(默认为 YES),或设置为YES  2.设置rootViewcontroller,如果为viewC ...

  7. The servlet name already exists.解决方法

    The servlet name already exists.解决方法 当我们建立过同名的servlet文件,然后又将其删掉后再用同类名字建一个servlet时就会报错.解决办法:web.xml里面 ...

  8. Oracle SQL高级编程——分析函数(窗口函数)全面讲解

    Oracle SQL高级编程--分析函数(窗口函数)全面讲解 注:本文来源于:<Oracle SQL高级编程--分析函数(窗口函数)全面讲解> 概述 分析函数是以一定的方法在一个与当前行相 ...

  9. [原著]java或者Js 代码逻辑来处理 突破 oracle sql “IN”长度的极限的问题

    注:本文出自:博主自己研究验证可行   [原著]java或者Js  代码逻辑来处理  突破 oracle  sql "IN"长度的极限的问题    在很多的时候 使用 select ...

  10. FromData获取表单数据

    一般想要不刷新页面提交数据时,可以使用ajax提交.如果数据量不大可以自己写json数据用ajax提交到后台服务,但是数据量多且需要动态添加数据时,自己写json格式数据就有点麻烦了,这时候就需要Fo ...