POJ 1364 / HDU 3666 【差分约束-SPFA】
POJ 1364
题解:最短路式子:d[v]<=d[u]+w
式子1:sum[a+b+1]−sum[a]>c — sum[a]<=sum[a+b+1]−c−1 — (a+b+1,a) −c−1
式子2:sum[a+b+1]−sum[a]<c — sum[a+b+1]<=sum[a]+c−1 — (a,a+b+1) c−1
注意:先移项,移项完后再处理没有等于的情况。
附加式:sum[0]<=sum[i]+0 —— (i,0) 0 连通所有点
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; const int N=;
const int INF=0x3f3f3f3f;
int n,m,cnt;
int head[N],d[N],Time[N];
bool vis[N]; struct edge{
int to,next,w;
}edge[N<<]; void add(int u,int v,int w){
edge[cnt].w=w;edge[cnt].to=v;edge[cnt].next=head[u];head[u]=cnt++;
} void init(){
cnt=;
memset(Time,,sizeof(Time));
memset(head,-,sizeof(head));
} bool SPFA(int st){
for(int i=;i<N;i++) d[i]=INF;
memset(vis,false,sizeof(vis));
queue <int> Q;
Q.push(st);
d[st]=;
vis[st]=true;
Time[st]=;
while(!Q.empty()){
int u=Q.front();
Q.pop();
vis[u]=false;
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].to;
if(d[v]>d[u]+edge[i].w){
d[v]=d[u]+edge[i].w;
if(!vis[v]){
Q.push(v);
vis[v]=true;
Time[v]++;
if(Time[v]>n) return false;
}
}
}
}
return true;
} int main(){
while(scanf("%d",&n)!=EOF&&n){
init();
scanf("%d",&m);
// 约束:s[0]<=s[i]+0
for(int i=;i<=n;i++) add(i,,);// 保证所有点连通
char op[];
for(int i=;i<=m;i++){
int a,b,c;
scanf("%d%d%s%d",&a,&b,&op,&c);
if(op[]=='g') add(a+b,a-,-c-);
else add(a-,a+b,c-);
}
if(SPFA()) printf("lamentable kingdom\n");
else printf("successful conspiracy\n");
}
return ;
}
HDU 3666
题解:由题意得:L<=c[i][j]∗a[i]/b[j]<=U 两边除以c[i][j]c[i][j] — L/c[i][j]<=a[i]/b[j]<=U/c[i][j],先两边取对数,得到log(L/c[i][j])<=log(a[i])−log(b[j])<=log(U/c[i][j]),推导出两个式子:
式子1:log(a[i])<=log(U/c[i][j])+log(b[j])
式子2:log(b[j])<=log(a[i])−log(L/c[i][j])
注意:log取double型,n个a和m个b连接,保证了图的连通性,不需要新建边。数据范围注意,有n∗m个点和2∗n∗m条边。注意剪枝
如果有起点,终点的约束,起点d[]距离就赋值为0,其余赋值为无穷。而对于没有起点,终点的约束,全部d[]距离都赋值为无穷。spfa算法,把所有点一开始都入队,这样每个点都遍历到了,就能保证不会有负环由于图的不连通而不被找到。差分约束能把所有约束条件转换成边求最短路,判断负环来解决问题。
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; const int N=+;
int n,m,cnt;
const double INF=1e12;
double l,r,c[N][N],d[N*];
int head[N*],Time[N*];
bool vis[N*]; struct e{
int to,next;
double w;
}edge[N*N*]; // 有反向边 void add(int u,int v,double w){
edge[cnt].w=w;edge[cnt].to=v;edge[cnt].next=head[u];head[u]=cnt++;
} void init(){
cnt=;
memset(Time,,sizeof(Time));
memset(head,-,sizeof(head));
} bool SPFA(int s)
{
for(int i=;i<*N;i++) d[i]=INF;
memset(vis,, sizeof(vis));
queue<int> q;
q.push(s);
d[s]=;
vis[s]=;
Time[s]=;
while(q.size())
{
int u = q.front();q.pop();
vis[u]=;
for(int i=head[u];i!=-;i=edge[i].next)
{
int v=edge[i].to;
double w=edge[i].w;
if(d[v]>d[u]+w)
{
d[v]=d[u]+w;
if(!vis[v])
{
q.push(v);
vis[v]=;
if(++Time[v]>sqrt(n+m))return false;
}
}
}
}
return true;
} int main(){
while(scanf("%d%d%lf%lf",&n,&m,&l,&r)!=EOF){
init();
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
scanf("%lf",&c[i][j]);
add(j+n,i,log(r/c[i][j]));
add(i,j+n,log(c[i][j]/l));
}
if(SPFA()) cout<<"YES"<<endl; // 从连通的顶点开始
else cout<<"NO"<<endl;
}
return ;
}
POJ 1364 / HDU 3666 【差分约束-SPFA】的更多相关文章
- poj 1364 King(差分约束)
题意(真坑):傻国王只会求和,以及比较大小.阴谋家们想推翻他,于是想坑他,上交了一串长度为n的序列a[1],a[2]...a[n],国王作出m条形如(a[si]+a[si+1]+...+a[si+ni ...
- POJ 3159 Candies(差分约束+spfa+链式前向星)
题目链接:http://poj.org/problem?id=3159 题目大意:给n个人派糖果,给出m组数据,每组数据包含A,B,C三个数,意思是A的糖果数比B少的个数不多于C,即B的糖果数 - A ...
- poj 3169 Layout(差分约束+spfa)
题目链接:http://poj.org/problem?id=3169 题意:n头牛编号为1到n,按照编号的顺序排成一列,每两头牛的之间的距离 >= 0.这些牛的距离存在着一些约束关系:1.有m ...
- (简单) POJ 3169 Layout,差分约束+SPFA。
Description Like everyone else, cows like to stand close to their friends when queuing for feed. FJ ...
- POJ 1364 King (差分约束)
King Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8660 Accepted: 3263 Description ...
- hdu 3666(差分约束,手动栈解决超时问题)
THE MATRIX PROBLEM Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- poj 1201 Intervals【差分约束+spfa】
设s为前缀和,首先显然的条件是\[ s_{bi}-s_{ai-1}>=c \],然后隐含的是\[ s_i-s_{i-1}>=0 s_i-s_{i-1}<=1 \] 然后根据差分约束, ...
- hdu 1534(差分约束+spfa求最长路)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1534 思路:设s[i]表示工作i的开始时间,v[i]表示需要工作的时间,则完成时间为s[i]+v[i] ...
- 【poj3169】【差分约束+spfa】
题目链接http://poj.org/problem?id=3169 题目大意: 一些牛按序号排成一条直线. 有两种要求,A和B距离不得超过X,还有一种是C和D距离不得少于Y,问可能的最大距离.如果没 ...
随机推荐
- <杂记>该换个背景图了
..当然我刚开始也是懵逼的,我有发现这里可以写css,但是还是缺个图片地址,想了想,这不是还有个相册功能吗. 那应该就是把自己要换的图片上传到相册吧. 右击图片,选择检查元素找到图片的src 如:ht ...
- 查询每个分组中第N的一条记录
查询每个分组中第N的一条记录 -- 天气表,每天每个地区采集了多条记录的天气信息,但是时间只记录到了天,导致同一个地区同一天出现了多条天气记录 -- 目的:获取所有地区在每天中第N的一条记录 sele ...
- Centos 6 安装FreeSWITCH
为了安装FreeSWITCH ,我选择的Linux是CentOS,目前最新的Centos版本是6.具体安装CentOS的是步骤详见网上的其它资料,本节的主要目的是为了记录FreeSWITCH的安装过程 ...
- LabVIEW中下拉列表和枚举的区别(两点)
第一:如图,在表示法上,下拉列表表示的数据范围要大,枚举只能是U32,U16, U8 第二:在vi的动态调用过程中,常用下拉列表,因为枚举控件不能动态的增加或者减少项目,而下拉列表则可以.
- axis1 创建service服务端 , axis1 客户端
axis1 服务端配置 1.首先建立一个项目 axisTest 不需多说 2.在lib下放入需要的jar包 点击下载 :axis所需的jar包下载 3.然后需要在web.xml里面加入: <s ...
- ElasticSearch搜索数据到底有几种方式?
Elasticsearch允许三种方式执行搜索请求: GET请求正文: curl -XGET "http://localhost:9200/app/users/_search" - ...
- Codeforces 487E Tourists [广义圆方树,树链剖分,线段树]
洛谷 Codeforces 思路 首先要莫名其妙地想到圆方树. 建起圆方树后,令方点的权值是双联通分量中的最小值,那么\((u,v)\)的答案就是路径\((u,v)\)上的最小值. 然而这题还有修改, ...
- 解决Navicat连接MySQL总是报错1251的方法
今天下了个 MySQL8.0,发现Navicat连接不上,总是报错1251: 原因是MySQL8.0版本的加密方式和MySQL5.0的不一样,连接会报错. 试了很多种方法,终于找到一种可以实现的: 更 ...
- Linux 上的 SQL Server 2017 的安装指南
一:介绍背景 微软在2016年 3 月首次对外宣布了 Linux 版的 SQL Server,并于2017年 7 月发布了首个公开 RC 版.前几日在美国奥兰多召开的微软 Ignite 2017 大会 ...
- Confluence 6 警告的类型
有下面的一些类型的警告. 警告和知识库(Alert and KB) 级别(Level) 默认阈值(Default threshold) 可配置(Configurable) Low free disk ...