传送门

随便摸一发题解算了

打表找规律

前五个答案是

1 5 16 45 121

其实是

1^2 3^2-4 4^2 7^2-4 11^2

底数就是类似于斐波那契数列,还有偶数项要减4

#include<bits/stdc++.h>
#define LL long long
#define db double
#define il inline
#define re register using namespace std;
const int N=1e2+10;
il LL rd()
{
LL x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
struct Num
{
int w,a[210];
Num(){memset(a,0,sizeof(a)),w=1;}
il void print()
{
++w;
while(w>1&&!a[w]) --w;
for(int i=w;i;--i) printf("%d",a[i]);
}
Num operator + (const Num &bb) const
{
Num an;
an.w=max(w,bb.w);
for(int i=1;i<=an.w;++i) an.a[i]=a[i]+bb.a[i];
for(int i=1;i<=an.w;++i) an.a[i+1]+=an.a[i]/10,an.a[i]%=10;
an.w+=an.a[an.w+1]>0;
return an;
}
Num operator * (const Num &bb) const
{
Num an;
an.w=w+bb.w+1;
for(int i=1;i<=w;++i)
for(int j=1;j<=bb.w;++j)
an.a[i+j-1]+=a[i]*bb.a[j];
for(int i=1;i<=an.w;++i) an.a[i+1]+=an.a[i]/10,an.a[i]%=10;
while(!an.a[an.w]) --an.w;
return an;
}
}a[N];
int n; int main()
{
n=rd();
a[1].a[1]=1,a[2].a[1]=3;
for(int i=3;i<=n;++i) a[i]=a[i-1]+a[i-2];
a[n]=a[n]*a[n];
if(n%2==0)
{
a[n].a[1]-=4;
for(int i=1;a[n].a[i]<0;++i) --a[n].a[i+1],a[n].a[i]+=10;
}
a[n].print();
return 0;
}

没了?

其实正解是\(Matrix-tree\)

图已经给你了,一个环然后每个点连向中间这个点,这个图的生成树个数就是答案

自己随便搞一下就真没了

然后懒得再写高精了qwq

#include<bits/stdc++.h>
#define LL long long
#define db double
#define il inline
#define re register using namespace std;
const int N=1e2+10,mod=1e9+7; //诶嘿嘿
il LL rd()
{
LL x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
il LL gg(int a[N][N],int n)
{
LL ans=1;
for(int i=1;i<=n;++i)
for(int j=i+1;j<=n;++j)
while(a[j][i])
{
LL x=a[i][i]/a[j][i];
for(int k=i;k<=n;++k) a[i][k]-=a[j][k]*x;
ans=mod-ans;
for(int k=i;k<=n;++k) swap(a[i][k],a[j][k]);
}
for(int i=1;i<=n;++i) ans=(ans*(a[i][i]%mod+mod)%mod)%mod;
return ans;
}
int n,a[N][N]; int main()
{
n=rd();
for(int i=1;i<=n;++i) a[i][i]=3;
a[n+1][n+1]=n;
for(int i=1;i<=n;++i) --a[n+1][i],--a[i][n+1];
for(int i=1;i<n;++i) --a[i][i+1],--a[i+1][i];
--a[1][n],--a[n][1];
printf("%lld\n",gg(a,n));
return 0;
}

luogu P2144 [FJOI2007]轮状病毒的更多相关文章

  1. 洛谷 P2144 [FJOI2007]轮状病毒

    P2144 [FJOI2007]轮状病毒 题目描述 轮状病毒有很多变种.许多轮状病毒都是由一个轮状基产生.一个\(n\)轮状基由圆环上\(n\)个不同的基原子和圆心的一个核原子构成.\(2\)个原子之 ...

  2. 洛谷P2144 [FJOI2007]轮状病毒

    可以用Matrix-Tree定理,然而被卡精度 #include<cstdio> #include<cstdlib> #include<algorithm> #in ...

  3. P2144 [FJOI2007]轮状病毒

    题目描述 轮状病毒有很多变种.许多轮状病毒都是由一个轮状基产生.一个n轮状基由圆环上n个不同的基原子和圆心的一个核原子构成.2个原子之间的边表示这2个原子之间的信息通道,如图1. n轮状病毒的产生规律 ...

  4. 【洛谷】2144:[FJOI2007]轮状病毒【高精度】【数学推导??(找规律)】

    P2144 [FJOI2007]轮状病毒 题目描述 轮状病毒有很多变种.许多轮状病毒都是由一个轮状基产生.一个n轮状基由圆环上n个不同的基原子和圆心的一个核原子构成.2个原子之间的边表示这2个原子之间 ...

  5. 【bzoj1002】[FJOI2007]轮状病毒

    1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4381  Solved: 2393[Submit][Statu ...

  6. 【BZOJ】1002: [FJOI2007]轮状病毒 递推+高精度

    1002: [FJOI2007]轮状病毒 Description 给定n(N<=100),编程计算有多少个不同的n轮状病毒. Input 第一行有1个正整数n. Output 将编程计算出的不同 ...

  7. bzoj 1002 [FJOI2007]轮状病毒 高精度&&找规律&&基尔霍夫矩阵

    1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2234  Solved: 1227[Submit][Statu ...

  8. 生成树的计数(基尔霍夫矩阵):BZOJ 1002 [FJOI2007]轮状病毒

    1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3928  Solved: 2154[Submit][Statu ...

  9. BZOJ 1002 [FJOI2007]轮状病毒

    1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3106  Solved: 1724[Submit][Statu ...

随机推荐

  1. A1046. Shortest Distance

    The task is really simple: given N exits on a highway which forms a simple cycle, you are supposed t ...

  2. django 分类搜索(根据不同的单选框,改变form提交的地址)

    前端html部分form <form id="searchform" action="#" method="get" class=&q ...

  3. Appium的图像界面浅说

    appium的图形用户界面(GUI) (1)Application中各个项的含义作用: Application Path:填写你需要测试的Android APK的包地址(两种方式:1直接点击Choos ...

  4. 第二十六篇-单击事件、Toast(提示框信息)

    单击事件有3种方法: 第一种: layout.xml <?xml version="1.0" encoding="utf-8"?> <Line ...

  5. Jquery Mobile事件

    Jquery Mobile事件参考手册 on()方法用于添加事件处理程序 1.Touch类事件 在用户触摸屏幕时触发 1.1 tap事件 用户敲击某个元素时发生 $("p").on ...

  6. Installation failed with message Failed to finalize session: INSTALL_FAILED_TEST_ONLY:installPackageLI.

    这样还不行的话,加 -t吧.

  7. Luogu P3521 [POI2011]ROT-Tree Rotations

    题目链接 \(Click\) \(Here\) 线段树合并,没想到学起来意外的很简单,一般合并权值线段树. 建树方法和主席树一致,即动态开点.合并方法类似于\(FHQ\)的合并,就是把两棵树的信息整合 ...

  8. Luogu P2148 [SDOI2009]E&D

    题目链接 \(Click\) \(Here\) 蒟蒻的人生第一道博弈论.真吉尔难啊.... 通常的博弈论写法似乎都是\(SG\)函数打表猜规律.本蒻其实本来想学一下博弈论的证明的,但后来发现果然还是打 ...

  9. Luogu P2852 [USACO06DEC]牛奶模式Milk Patterns

    题目链接 \(Click\) \(Here\) 水题.利用\(Height\)的性质维护一个单调栈即可. #include <bits/stdc++.h> using namespace ...

  10. asp一句话

    <%eval""&("e"&"v"&"a"&"l"&& ...