传送门:>Here<

题意:给出长度相等的数组a和b,定义他们的和为$\dfrac{a_1+a_2+...+a_n}{b_1+b_2+...+b_n}$。现在可以舍弃k对元素(一对即$a[i]和b[i]$),问最大的和是多少?

解题思路

01分数规划入门题(并没有学过,看到hy大佬在刷因此也去学了下)

问题可以转化为数组中的每个元素选或不选,也就可以认为每一个元素都乘上一个$x[i], \ x[i] ∈ \{0, 1\}$

因此问题可以转化为$ans = \dfrac{\sum\limits_{i = 1}^{n}a[i] * x[i]}{\sum\limits_{i = 1}^{n}b[i] * x[i]}$

将除法转化为加法$\sum\limits_{i = 1}^{n}a[i] * x[i] - ans * \sum\limits_{i = 1}^{n}b[i] * x[i] = 0$

合并得$\sum\limits_{i = 1}^{n}(a[i]-ans*b[i])*x[i] = 0$

当$x$数组的取值确定时,可以发现函数$f(r) = \sum\limits_{i = 1}^{n}(a[i]-r*b[i])*x[i]$是减函数,因此可以二分$r$。当前取到的$r$能够满足$\sum\limits_{i = 1}^{n}(a[i]-r*b[i])*x[i] \geq 0$即为可行,为了满足此条件,肯定要让选择的那些元素的和越大越好,因此可以建立数组$d[i] = a[i]-r*b[i]$并排序,选择最大的加起来验证是否大于等于0.

Code

long long

/*By DennyQi 2018.8.12*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
#define r read()
#define Max(a,b) (((a)>(b)) ? (a) : (b))
#define Min(a,b) (((a)<(b)) ? (a) : (b))
using namespace std;
typedef long long ll;
#define int long long
const int MAXN = ;
const int MAXM = ;
const int INF = ;
inline int read(){
int x = ; int w = ; register int c = getchar();
while(c ^ '-' && (c < '' || c > '')) c = getchar();
if(c == '-') w = -, c = getchar();
while(c >= '' && c <= '') x = (x << ) + (x << ) + c - '', c = getchar(); return x * w;
}
struct Score{
int idx; double sc;
}s[MAXN];
int N,K;
int a[MAXN],b[MAXN];
double L,R,Mid,d[MAXN];
inline bool comp(const Score& a, const Score& b){
return a.sc < b.sc;
}
inline bool judge(double _r){
for(int i = ; i <= N; ++i){
d[i] = (double)((double)(a[i]) - (double)(1.0*_r*b[i]));
}
sort(d+,d+N+);
double res = 0.0;
for(int i = N; i > K; --i){
res += d[i];
}
return res >= 0.0;
}
#undef int
int main(){
#define int long long
for(;;){
N = r, K = r;
if(!N && !K) break;
for(int i = ; i <= N; ++i) a[i] = r;
for(int i = ; i <= N; ++i) b[i] = r;
L = 0.000, R = 9999999999.999;
while(R - L >= 1e-){
Mid = (L + R) / 2.000;
if(judge(Mid)){
L = Mid;
}
else{
R = Mid;
}
}
for(int i = ; i <= N; ++i){
s[i] = (Score){i, (double)((double)(a[i]) - (double)(1.0*L*b[i]))};
}
sort(s+,s+N+,comp);
int fz=,fm=;
for(int i = N; i > K; --i){
fz += a[s[i].idx];
fm += b[s[i].idx];
}
double rs = (double)fz/(double)fm;
printf("%.0f\n", rs * );
}
return ;
}

[POJ2976] Dropping tests的更多相关文章

  1. POJ2976 Dropping tests(二分+精度问题)

    ---恢复内容开始--- POJ2976 Dropping tests 这个题就是大白P144页的一个变形,二分枚举x,对a[i]-x*b[i]从大到小进行排序,选取前n-k个判断和是否大于等于0,若 ...

  2. POJ2976 Dropping tests —— 01分数规划 二分法

    题目链接:http://poj.org/problem?id=2976 Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total S ...

  3. poj2976 Dropping tests(01分数规划 好题)

    https://vjudge.net/problem/POJ-2976 又是一波c++AC,g++WA的题.. 先推导公式:由题意得 Σa[i]/Σb[i]<=x,二分求最大x.化简为Σ(a[i ...

  4. POJ2976 Dropping tests(01分数规划)

    题目大概说给n个二元组Ai和Bi,要去掉k个,求余下的100*∑Ai/∑Bi的最大值. 假设要的最大的值是ans,令Di=Ai-ans*∑Bi,对Di排序取最大的n-k个,如果∑Ai-ans*∑Bi& ...

  5. POJ2976 Dropping tests 01分数规划

    裸题 看分析请戳这里:http://blog.csdn.net/hhaile/article/details/8883652 #include<stdio.h> #include<a ...

  6. [poj2976]Dropping tests(01分数规划,转化为二分解决或Dinkelbach算法)

    题意:有n场考试,给出每场答对的题数a和这场一共有几道题b,求去掉k场考试后,公式.的最大值 解题关键:01分数规划,double类型二分的写法(poj崩溃,未提交) 或者r-l<=1e-3(右 ...

  7. POJ2976 Dropping tests(01分数规划)

    题意 给你n次测试的得分情况b[i]代表第i次测试的总分,a[i]代表实际得分. 你可以取消k次测试,得剩下的测试中的分数为 问分数的最大值为多少. 题解 裸的01规划. 然后ans没有清0坑我半天. ...

  8. 【POJ2976】Dropping Tests(分数规划)

    [POJ2976]Dropping Tests(分数规划) 题面 Vjudge 翻译在\(Vjudge\)上有(而且很皮) 题解 简单的\(01\)分数规划 需要我们做的是最大化\(\frac{\su ...

  9. Dropping tests(01分数规划)

    Dropping tests Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8176   Accepted: 2862 De ...

随机推荐

  1. java并发线程池---了解ThreadPoolExecutor就够了

    总结:线程池的特点是,在线程的数量=corePoolSize后,仅任务队列满了之后,才会从任务队列中取出一个任务,然后构造一个新的线程,循环往复直到线程数量达到maximumPoolSize执行拒绝策 ...

  2. C#.NET 大型通用信息化系统集成快速开发平台 4.1 版本 - 客户端多网络支持

    客户端可以支持灵活的,中间层连接选择,由于我们系统的定位架构大型信息系统的,所以全国各地,甚至国外的用户也会有,所以需要支持全网络配置,只要配置了中间层,可以选择连接哪个中间层的服务程序.客户端可以进 ...

  3. ASP.NET项目开发

    ASP.NET项目开发 1.C/S模式 (client 客户端 server 服务器):QQ.证券.酷狗.旺旺...需要下载响应软件: 工作原理:客户端请求--ASP.net服务器端应用(<-- ...

  4. sql定时备份

    老规矩,直接上代码: ) set @name='C:\Backup\MyStudy_'+ ),)+'.bak' BACKUP DATABASE[MyStudy]TO DISK=@name WITH N ...

  5. Django ORM 反向查询

    一/一对多反向查询   先定义两个模型,一个是A,一个是B,是一对多的类型. class A(models.Model): name= models.CharField('名称', max_lengt ...

  6. 单例模式及设计url分发

      1.单例模式 2.admin源码解析 3.注册源码流程图 3.admin之url方法的使用 4.admin源码之url设计 5.设计url源码流程 6.总结 1.单例模式 https://www. ...

  7. C# foreach内部原理

    我们知道使用foreach的一个要求是对象必须继承自IEnumerable接口 这样才可以进行迭代 那内部是怎么实现的呢 这个时候会将对应的foreach语句转换为一个while循环 并且通过Move ...

  8. PHP中stdClass的意义

    在WordPress中很多地方使用stdClass来定义一个对象(而通常是用数组的方式),然后使用get_object_vars来把定义的对象『转换』成数组. 如下代码所示:   1 2 3 4 5 ...

  9. 记自己在mybatis中设置jdbcType的一个坑

    项目是用ssm搭建的.主要是为app数据接口.其中有一个需求就app想要查询一段时间内某个用户的测量信息,所以app给我后端传递了3个参数,分别是appuserId(String),startDate ...

  10. Unit 2.前端之html--table(表格),form(表单)标签

    一.table标签 作用:定义html表格.一个table标签元素至少包含 thead(表头),tbody(表主题),还可以有tfoot(表底部) html表格游table元素及一个或者多个tr,th ...