Description

n个集合 m个操作
操作:
1 a b 合并a,b所在集合
2 k 回到第k次操作之后的状态(查询算作操作)
3 a b 询问a,b是否属于同一集合,是则输出1否则输出0

0<n,m<=2*10^4

Input

 

Output

 

Sample Input

5 6
1 1 2
3 1 2
2 0
3 1 2
2 1
3 1 2

Sample Output

1
0
1

思路:

用主席树去维护一个可持久化的数组,并查集的操作就变成了在这个可持久化数组上跳来跳去,
连接两个点x,y就直接在主席树上下标为x点赋值为y,这样查询的时候只要一直跳就可以跳到根节点
实现代码;
#include<bits/stdc++.h>
using namespace std;
#define mid int m = (l + r) >> 1
const int M = 2e6 + ; int sum[M],ls[M],rs[M],dep[M],n,idx,root[M];
void build(int l,int r,int &rt){
rt = ++idx;
if(l == r){
sum[rt] = l;
return ;
}
mid;
build(l,m,ls[rt]); build(m+,r,rs[rt]);
return ;
} void update(int old,int &rt,int p,int c,int l,int r){
rt = ++idx; ls[rt] = ls[old]; rs[rt] = rs[old];
dep[rt] = dep[old];
if(l == r){
sum[rt] = c;
return ;
}
mid;
if(p <= m) update(ls[old],ls[rt],p,c,l,m);
else update(rs[old],rs[rt],p,c,m+,r);
} int query(int p,int l,int r,int rt){
if(l == r) return rt;
mid;
if(p <= m) return query(p,l,m,ls[rt]);
else return query(p,m+,r,rs[rt]);
} void add(int p,int l,int r,int rt){
if(l == r){
dep[rt] ++;
return;
}
mid;
if(p <= m) add(p,l,m,ls[rt]);
else add(p,m+,r,rs[rt]);
} int fd(int x,int rt){
int pos = query(x,,n,rt);
if(x == sum[pos]) return pos;
return fd(sum[pos],rt);
} int main()
{
int q,op,x,y,k;
scanf("%d%d",&n,&q);
build(,n,root[]);
for(int i = ;i <= q;i ++){
scanf("%d",&op);
if(op == ){
scanf("%d%d",&x,&y);
root[i] = root[i-];
int fx = fd(x,root[i-]);
int fy = fd(y,root[i-]);
if(sum[fx] == sum[fy]) continue;
if(dep[fx] > dep[fy]) swap(fx,fy);
update(root[i-],root[i],sum[fx],sum[fy],,n);
if(dep[fx] == dep[fy]) add(sum[fy],,n,root[i]);
}
else if(op == ){
scanf("%d",&k);
root[i] = root[k];
}
else {
root[i] = root[i-];
scanf("%d%d",&x,&y);
int fx = fd(x,root[i]);
int fy = fd(y,root[i]);
if(sum[fx] == sum[fy]) printf("1\n");
else printf("0\n");
}
}
return ;
}

bzoj 3673 可持久化并查集 by zky的更多相关文章

  1. Bzoj 3673: 可持久化并查集 by zky(主席树+启发式合并)

    3673: 可持久化并查集 by zky Time Limit: 5 Sec Memory Limit: 128 MB Description n个集合 m个操作 操作: 1 a b 合并a,b所在集 ...

  2. BZOJ 3673 可持久化并查集 by zky && BZOJ 3674 可持久化并查集加强版 可持久化线段树

    既然有了可持久化数组,就有可持久化并查集.. 由于上课讲过说是只能按秩合并(但是我也不确定...),所以就先写了按秩合并,相当于是维护fa[]和rk[] getf就是在这棵树中找,直到找到一个点的fa ...

  3. 3673: 可持久化并查集 by zky

    3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2170  Solved: 978[Submit][Status ...

  4. 【BZOJ】3673: 可持久化并查集 by zky & 3674: 可持久化并查集加强版(可持久化线段树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3674 http://www.lydsy.com/JudgeOnline/problem.php?id ...

  5. BZOJ 3673: 可持久化并查集(可持久化并查集+启发式合并)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3673 题意: 思路: 可持久化数组可以用可持久化线段树来实现,并查集的查询操作和原来的一般并查集操作 ...

  6. bzoj 3673 可持久化并查集

    本质上是维护两个可持久化数组,用可持久化线段树维护. /************************************************************** Problem: ...

  7. BZOJ 3674 可持久化并查集加强版(主席树变形)

    3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MB Submit: 2515  Solved: 1107 [Submit][Sta ...

  8. 【BZOJ3673】&&【BZOJ3674】: 可持久化并查集 by zky 可持久化线段树

    没什么好说的. 可持久化线段树,叶子节点存放父亲信息,注意可以规定编号小的为父亲. Q:不是很清楚空间开多大,每次询问父亲操作后修改的节点个数是不确定的.. #include<bits/stdc ...

  9. BZOJ 3674 可持久化并查集加强版(路径压缩版本)

    /* bzoj 3674: 可持久化并查集加强版 http://www.lydsy.com/JudgeOnline/problem.php?id=3674 用可持久化线段树维护可持久化数组从而实现可持 ...

随机推荐

  1. React-redux框架之connect()与Provider组件 用法讲解

    react-redux 在react-redux 框架中,给我提供了两个常用的API来配合Redux框架的使用,其实在我们的实际项目开发中,我们完全可以不用react-redux框架,但是如果使用此框 ...

  2. CF892/problem/C

    题目传送门: [http://codeforces.com/contest/892/problem/C] 题意: 给你一个长度为n的数组,相邻两个元素的GCD(最大公约数)可以取代二者的任意一个,问你 ...

  3. vue echarts 动态数据

    安装echarts依赖 npm install echarts -S 或者使用国内的淘宝镜像: 安装 npm install -g cnpm --registry=https://registry.n ...

  4. python 中的super()继承,搜索广度为先

    一.python中类的继承 1.1 单继承 在python 中我们可以这样来定义一个类:及继承它的子类 class Father: def __init__(self, mes): #1 父类的ini ...

  5. tomcat启动参数

    /usr/java/jdk1..0_191-amd64/bin/java -Djava.util.logging.config./conf/logging.properties -Djava.util ...

  6. class用法

    自 PHP 5.5 起,关键词 class 也可用于类名的解析.使用 ClassName::class 你可以获取一个字符串,包含了类 ClassName 的完全限定名称.这对使用了 命名空间 的类尤 ...

  7. [转帖]关于CPU Cache -- 程序猿需要知道的那些事

    关于CPU Cache -- 程序猿需要知道的那些事 很早之前读过作者的blog 记得作者在facebook 工作.. 还写过mysql相关的内容 大拿 本文将介绍一些作为程序猿或者IT从业者应该知道 ...

  8. Oracle pivot行转列函数案例

    with temp as( select '湖北省' province,'武汉市' city,'第一' ranking from dual union all select '湖北省' provinc ...

  9. 校园电商项目3(基于SSM)——配置Maven

    步骤一:添加必要文件夹 先在src/main/resources下添加两个文件夹 接着在webapp文件夹下添加一个resources文件夹存放我们的静态网页内容 WEB-INF里的文件是不会被客户端 ...

  10. python数据结构与算法第九天【选择排序】

    1.选择排序的原理 2.代码实现 def selection_sort(alist): n = len(alist) # 需要进行n-1次选择操作 for i in range(n-1): # 记录最 ...