题目描述

  有标有数字为\(1\)~\(9\)的卡片各\(a_1,a_2\cdots a_9\)张,还有标有乘号的卡片\(m\)张。从中取出\(n\)张按任意顺序排列,取出两个乘号相邻和乘法在边界上的非法式子,剩下的都是合法式子。求所有合法式子的方案的值的和。两张数字相同的卡片是不同的,两张乘号也是不同的。答案模\({10}^9+7\)

  \(n\leq 1000,a_i\leq {10}^8,m\leq{10}^8\)

题解

  \(n^\underline{m}=n\times(n-1)\times(n-2)\times\cdots\times(n-m+1)=A(n,m)\)即排列数

  我们先枚举哪些位置有乘号

  现在我们考虑把\(1,2,3,4\)四个数字填到\(\_\_\times\_\_\)这样子的算式中。假设\(m=2\)。把式子展开

\[\begin{align}
&~~~~~\overline{ab}\times\overline{cd}\\
&=(a\times10+b)\times(c\times10+d)\\
&=a\times c\times 10\times 10+a\times d\times 10\times 1+b\times c\times 1\times 10+b\times d\times 1\times 1\\
&=100ac+10ad+10bc+bd
\end{align}
\]

  我们还有另外\(23\)个式子呢

\[\overline{ab}\times\overline{dc}\\
\overline{ba}\times\overline{cd}\\
\overline{ba}\times\overline{dc}\\
\vdots
\]

  另外我们发现,\(ac\)和\(ad\)对答案的贡献都是相似的(因为除了乘积不同之外没有什么区别)我们考虑计算系数和出现次数

  系数会有\(10\times 10,10\times 1,1\times 10,1\times 1\),那么怎样计算出现次数呢?

  先钦定这两个数字放的位置(就是系数),剩下那些空位总共有两个,还剩下两个数没填,方案数就是\(2^\underline{2}=2\)

  最后还要乘上选择乘号的方案数\(2^\underline{1}=2\)

  于是总的贡献就是

\[(1\times 2+1\times 3+1\times 4+\cdots+4\times 3)\times(100+10+10+1)\times 2\times 2=???
\]

  现在我们来考虑更复杂的情况

  \(sum\)为所有数字卡片的个数和,\(g_{i,j}\)为前\(i\)个数字中选出\(j\)个代表数字的乘积的和,\(f_{i,j}\)为前\(i\)个空填了\(j\)个乘号的合法算式的系数和,\(s_i\)为这\(n\)个空中填入\(i\)个乘号的答案。

  这里只讲一下\(f\)的推导

\[\begin{align}
&~~~~~\overline{ab}\times \overline{cd}\\
&=100ac+10ad+10bc+bd\\
&=10(10ac+bc)+(10a+b)d\\
\end{align}
\]

  那么\(10ac+bc\)的系数就是\(\overline{ab}\times c\)的系数(前一个位置的系数),\(10a+b\)的系数就是到上一个乘号前一个位置的系数。所以我们可以枚举上一个乘号是哪个位置,然后转移

\[g_{i,j}=\sum_{k=0}^{a_i}g_{i-1,k-j}\times i^k\times \binom{j}{k}\times a_i^\underline{k}\\
f_{i,j}=f_{i-1,j}\times10+\sum_{k=1}^{i}f_{k,j-1}\\
s_i=g_{9,i+1}\times f_{n,i}\times {(sum-i-1)}^\underline{n-i-(i+1)}\times m^\underline{i}
\]

  排列组合什么的可以预处理或暴力算

  时间复杂度:\(O(n^2)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
ll p=1000000007;
int a[10];
ll g[10][1010];
ll f[1010][1010];
ll s[1010][1010];
ll aa[10][1010];
ll pa[10][1010];
ll cc[1010][1010];
ll am[1010];
ll geta(ll n,ll m)
{
ll s=1;
int i;
for(i=1;i<=m;i++)
s=s*(n-i+1)%p;
return s;
}
int main()
{
// freopen("c.in","r",stdin);
// freopen("c.out","w",stdout);
int n,m,sum=0;
scanf("%d%d",&n,&m);
int i;
for(i=1;i<=9;i++)
{
scanf("%d",&a[i]);
sum+=a[i];
}
int j,k;
for(i=1;i<=9;i++)
{
pa[i][0]=1;
aa[i][0]=1;
for(j=1;j<=n;j++)
{
pa[i][j]=pa[i][j-1]*i%p;
aa[i][j]=aa[i][j-1]*(a[i]-j+1)%p;
}
}
for(i=0;i<=n;i++)
{
cc[i][0]=1;
for(j=1;j<=i;j++)
cc[i][j]=(cc[i-1][j]+cc[i-1][j-1])%p;
}
g[0][0]=1;
for(i=1;i<=9;i++)
for(j=0;j<=n;j++)
for(k=0;k<=j&&k<=a[i];k++)
g[i][j]=(g[i][j]+g[i-1][j-k]*pa[i][k]%p*cc[j][k]%p*aa[i][k]%p)%p;
for(i=1;i<=n;i++)
{
f[i][0]=(f[i-1][0]*10+1)%p;
s[i][0]=(s[i-1][0]+f[i][0])%p;
for(j=1;j<=n;j++)
{
f[i][j]=f[i-1][j]*10%p;
if(i>2)
f[i][j]=(f[i][j]+s[i-2][j-1])%p;
s[i][j]=(f[i][j]+s[i-1][j])%p;
}
}
am[0]=1;
for(i=1;i<=n;i++)
am[i]=am[i-1]*(m-i+1)%p;
ll ans=0;
for(i=0;i<=(n-1)/2&&i<=m;i++)
ans=(ans+g[9][i+1]*f[n][i]%p*geta(sum-i-1,n-2*i-1)%p*am[i]%p)%p;
printf("%lld\n",ans);
return 0;
}

【XSY1591】卡片游戏 DP的更多相关文章

  1. 【sicily】卡片游戏

    卡片游戏  Time Limit: 1sec    Memory Limit:32MB Description 桌上有一叠牌,从第一张牌(即位于顶面的牌)开始从上往下依次编号为1~n.当至少还剩两张牌 ...

  2. Sicily 1931. 卡片游戏

    题目地址:1931. 卡片游戏 思路: 纯属数据结构中队列的应用,可以练练手. 具体代码如下: #include <iostream> #include <queue> usi ...

  3. 卡片游戏(hdu4550)贪心

    卡片游戏 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Total Submi ...

  4. nyoj905 卡片游戏

    卡片游戏 时间限制:1000 ms  |  内存限制:65535 KB 难度:1   描述 小明最近宅在家里无聊,于是他发明了一种有趣的游戏,游戏道具是N张叠在一起的卡片,每张卡片上都有一个数字,数字 ...

  5. 1233: 传球游戏 [DP]

    1233: 传球游戏 [DP] 时间限制: 1 Sec 内存限制: 128 MB 提交: 4 解决: 3 统计 题目描述 上体育课的时候,小蛮的老师经常带着同学们一起做游戏.这次,老师带着同学们一起做 ...

  6. NYOJ 905 卡片游戏

    卡片游戏 时间限制:1000 ms  |  内存限制:65535 KB 难度:1 描写叙述 小明近期宅在家里无聊.于是他发明了一种有趣的游戏.游戏道具是N张叠在一起的卡片,每张卡片上都有一个数字,数字 ...

  7. 游戏 DP

    游戏 DP [题意描述] 小喵喵喜欢玩 RPG 游戏.在这款游戏中,玩家有两个属性,攻击和防御,现在小喵喵的攻击和防御都是 1,接下来小喵喵会依次遇到 n 个事件.事件有两种. 1.小喵喵经过修炼,角 ...

  8. Java实现 LeetCode 822 翻转卡片游戏(暴力)

    822. 翻转卡片游戏 在桌子上有 N 张卡片,每张卡片的正面和背面都写着一个正数(正面与背面上的数有可能不一样). 我们可以先翻转任意张卡片,然后选择其中一张卡片. 如果选中的那张卡片背面的数字 X ...

  9. [LuoguP1005]矩阵取数游戏 (DP+高精度)

    题面 传送门:https://www.luogu.org/problemnew/show/P1005 Solution 我们可以先考虑贪心 我们每一次都选左右两边尽可能小的数,方便大的放在后面 听起来 ...

随机推荐

  1. 【转载】KETTLE集群搭建

    一.集群的原理与优缺点 1.1集群的原理 Kettle集群是由一个主carte服务器和多个从carte服务器组成的,类似于master-slave结构,不同的是’master’处理具体任务,只负责任务 ...

  2. IOS - UTF-8转码问题

    2016.07.06 21:45* 字数 61 阅读 921评论 0喜欢 2 IOS中提供的转码. [utf8str stringByAddingPercentEscapesUsingEncoding ...

  3. 《梦断代码》Scott Rosenberg著(二)

    书中有一段说的是一个闪烁缺陷——在改变某软件中某个窗体的尺寸时,屏幕会闪烁一秒钟左右.虽然该缺陷不会影响程序运行,但它不符合作者的审美观,历时六个多月仍然没能修正.其实在日常的编程中也有许多小bug的 ...

  4. Docker常规防止容器自动退出

    [root@server-crm /]# docker attach songheng [root@fc0a891e1861 /]# cat /bin/auto_service.sh #!/bin/s ...

  5. CMMI摘要

    CMMI_百度百科https://baike.baidu.com/item/CMMI CMMI分为哪几个等级?CMMI等级介绍_百度经验https://jingyan.baidu.com/articl ...

  6. Ubuntu 12.04 安装socks5代理服务器dante-server

    dante-server是一个很好的socks4/5代理服务器软件. 使用apt-get安装   1 apt-getinstall dante-server 添加一个用户   1 2 useradd ...

  7. windows中dir命令

    最近想用dos命令打印指定目录下的所有文件夹的完整路径.最终发现可用dir命令来实现.在此学习下dir的各项命令. 32位win7系统上,打印帮助文档. D:\test>dir /? 显示目录中 ...

  8. Docker 给 故障停掉的 container 增加 restart 参数

    操作过程见图: 执行的命令比较简单: docker container update --restart=always containername 即可.

  9. 国内的go get问题的解决

    在国内采用go get有时会下载不到一些网站如golang.org的依赖包. 方法1(亲测有效): gopm 代替go 下载第三方依赖包可以采用gopm从golang.org一些镜像网站上下载. 注意 ...

  10. Java——scoket通讯

    Socket 网络上的两个程序通过一个双向的通信连接实现数据的交换,这个连接的一端称为一个socket. Socket是TCP/IP协议通信的抽象层,所以我们还需要了解TCP协议 传输层协议 TCP: ...