LOJ2255. 「SNOI2017」炸弹 (线段树)
本文为线段树做法
(听说可以tarjan缩点+拓扑?
感觉差不多。。而且这样看起来方便很多
找到左端点的过程可以看作
点 -> 区间内lowerbound最小的点 -> lowerbound -> 区间内lowerbound最小的点 -> lowerbound -> ......
所以直接维护每个点lowerbound,线段树维护下就好啦
右端点同理
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
using namespace std;
const int N = 5e5 + 5;
const long long P = 1e9 + 7;
const int inf = 0x3f3f3f3f;
int n, m;
long long pos[N], rad[N];
int L[N], R[N];
long long ans;
struct Seg{
int lm[N << 2], rm[N << 2];
void update(int rt){
lm[rt] = min(lm[rt << 1], lm[rt << 1 | 1]);
rm[rt] = max(rm[rt << 1], rm[rt << 1 | 1]);
}
void build(int l, int r, int rt){
if(l == r){
lm[rt] = L[l], rm[rt] = R[l];
return ;
}
int mid = l + ((r - l) >> 1);
build(l, mid, rt << 1);
build(mid + 1, r, rt << 1 | 1);
update(rt);
}
void qry(int l, int r, int x, int y, int& nx, int& ny, int rt){
if(l == x && r == y){
nx = min(lm[rt], nx); ny = max(rm[rt], ny); return ;
}
int mid = l + ((r - l) >> 1);
if(x <= mid) qry(l, mid, x, min(y, mid), nx, ny, rt << 1);
if(y > mid) qry(mid + 1, r, max(x, mid + 1), y, nx, ny, rt << 1 | 1);
}
}seg;
inline int l_lim(int x){
return lower_bound(pos + 1, pos + x, pos[x] - rad[x]) - pos;
}
inline int r_lim(int x){
return upper_bound(pos + x + 1, pos + n + 1, pos[x] + rad[x]) - pos - 1;
}
int main(){
scanf("%d", &n);
for(int i = 1; i <= n; ++i){
scanf("%lld%lld", &pos[i], &rad[i]);
}
for(int i = 1; i <= n; ++i){
L[i] = l_lim(i);
R[i] = r_lim(i);
}
seg.build(1, n, 1);
ans = 0;
int x, y, nx, ny;
for(int i = 1; i <= n; ++i){
x = y = nx = ny = i;
do{
x = nx, y = ny;
nx = inf, ny = -inf; seg.qry(1, n, x, y, nx, ny, 1);
}while((nx ^ x) | (ny ^ y));
ans = (ans + 1ll * i * (y - x + 1) % P) % P;
//这里原来忘乘1ll了爆了long long
}
printf("%lld\n", ans);
return 0;
}
/*
单纯维护两边并更新不可行 可能会有折向引爆
*/
LOJ2255. 「SNOI2017」炸弹 (线段树)的更多相关文章
- loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点
loj#2255. 「SNOI2017」炸弹 线段树优化建图,拓扑,缩点 链接 loj 思路 用交错关系建出图来,发现可以直接缩点,拓扑统计. 完了吗,不,瓶颈在于边数太多了,线段树优化建图. 细节 ...
- loj #2255. 「SNOI2017」炸弹
#2255. 「SNOI2017」炸弹 题目描述 在一条直线上有 NNN 个炸弹,每个炸弹的坐标是 XiX_iXi,爆炸半径是 RiR_iRi,当一个炸弹爆炸时,如果另一个炸弹所在位置 X ...
- LOJ 2312(洛谷 3733) 「HAOI2017」八纵八横——线段树分治+线性基+bitset
题目:https://loj.ac/problem/2312 https://www.luogu.org/problemnew/show/P3733 原本以为要线段树分治+LCT,查了查发现环上的值直 ...
- bzoj5518 & loj3046 「ZJOI2019」语言 线段树合并+树链的并
题目传送门 https://loj.ac/problem/3046 题解 首先问题就是问有多少条路径是给定的几条路径中的一条的一个子段. 先考虑链的做法. 枚举右端点 \(i\),那么求出 \(j\) ...
- LG1198/BZOJ1012 「JSOI2008」最大数 线段树+离线
问题描述 LG1198 BZOJ1012 题解 我们把所有操作离线,设一共有\(n\)个插入操作. 于是提前建立\(n\)个数,全部设为\(-INF\) 接着逐个处理操作即可. \(\mathrm{C ...
- LOJ #2005. 「SDOI2017」相关分析 线段树维护回归直线方程
题目描述 \(Frank\) 对天文学非常感兴趣,他经常用望远镜看星星,同时记录下它们的信息,比如亮度.颜色等等,进而估算出星星的距离,半径等等. \(Frank\) 不仅喜欢观测,还喜欢分析观测到的 ...
- [SNOI2017]炸弹[线段树优化建图]
[SNOI2017]炸弹 线段树优化建图,然后跑一边tarjan把点全部缩起来,炸一次肯定是有连锁反应的所以整个连通块都一样-于是就可以发现有些是只有单向边的不能忘记更新,没了. #include & ...
- loj #2254. 「SNOI2017」一个简单的询问
#2254. 「SNOI2017」一个简单的询问 题目描述 给你一个长度为 NNN 的序列 aia_iai,1≤i≤N1\leq i\leq N1≤i≤N,和 qqq 组询问,每组询问读入 l1 ...
- 「SNOI2017」一个简单的询问
「SNOI2017」一个简单的询问 简单的解法 显然可以差分一下. \[get(l,r,x)\times get(l1,r1,x)=get(1,r,x) \times get(1,r1,x)-get( ...
随机推荐
- mybatis之批量插入
一.导入功能优化 普通for循环,对于导入大量数据时非常耗时.可以通过Mybatis的批量插入功能提高效率.每批次导入的数据不能太多,否则会报错.通过测试发现,每批次200条为宜. 测试结果: 开启事 ...
- SQL UPDATE with INNER JOIN
mysql - SQL UPDATE with INNER JOIN - Stack Overflowhttps://stackoverflow.com/questions/14491042/sql- ...
- python中$和@基础笔记
python 2.4以后,增加了@符号修饰函数对函数进行修饰,python3.0/2.6又增加了对类的修饰. $ 在正则表达式中,匹配一个字符串的末尾.(参考http://www.runoob.com ...
- AJAX返回值问题
ajax同步方式获取返回值,必须以同步请求的的方式获取. //主函数部分 function confirm(id,...)//省略部分参数 { //...省略部分代码 //任务涉及专业 var Maj ...
- [转帖]windows7/windows NT介绍
windows7/windows NT介绍 原文应该是IT168发布的 但是一直没找到 感觉看了之后 明白了很多 技术都是互相融合的 没有严格意义上的对立直说. Windows 7/Windows ...
- 缓存session,cookie,sessionStorage,localStorage的区别
https://www.cnblogs.com/cencenyue/p/7604651.html(copy) 浅谈session,cookie,sessionStorage,localStorage的 ...
- 重启iis命令
iisreset
- java学习之—递归实现二分查找法
/** * 递归实现二分查找法 * Create by Administrator * 2018/6/21 0021 * 上午 11:25 **/ class OrdArray{ private lo ...
- python数学第五天【常用概率分布】
1. 概率基本公式 思考题: 3. 两点分布 4. 二项分布 推论一: 5.柏松分布 6. 均匀分布 7. 指数分布 8. 正态分布 9.常见分布的总结
- python设计模式第六天【原型模式】
1.定义 使用原型模式复制的对象与原来对象具有一样的结构和数据,有浅克隆和深克隆 2.应用场景 (1)希望复制原来对象的结构和数据胆步影响原来对象 3.代码实现 #!/usr/bin/env pyth ...