BZOJ2244 拦截导弹
此题最早看到是在我还什么都不会的去年的暑期集训,是V8讲的DP专题,我当时还跑去问这概率怎么做。这道题要求的是二维最长不上升子序列,加上位置一维就成了三维偏序问题,也就是套用CDQ分治,对位置排序,然后对一维分治,对剩下的一维树状数组,类似的问题用树状数组套平衡树也能解决,但似乎常数很大。然后这题的第一个关键就是在做CDQ的时候先做CDQ(l,mid)的区间,然后去计算左边对右边的影响,最后去计算CDQ(mid+1,r),昨晚看别人博客中说这是显然的,当时我就懵逼了,于是这题今天上课看了很久。发现的确要这么做的,因为其实你是在维护第三维树状数组的时候去做了这个DP的过程,当计算以该点为结尾的最长不上升子序列时,你当然应该先做左区间,然后就可以去更新一下相对右边这些点的值,然后就再去做CDQ的右区间。具体是分别维护区间的最长不上升子序列的长度,以及出现的次数。做法是这样的,首先对左右两边分别按照第二维从小到大排序,将左边的所有的第二维大于右边的点全部加入树状数组,更新第三维,要注意更新和查询的方向正好是反过来的,因为你要查的是大于右边某个值的最长不上升子序列的长度,然后更新一下dp数组,也就是代码中的f[0]数组。然后再把整个序列反过来做一遍CDQ,求以某个点为开始的最长不上升子序列。
加一个学习的链接:https://www.cnblogs.com/liu-runda/p/6416195.html
- #include<bits/stdc++.h>
- #define ll long double
- #define pb push_back
- #define _mp make_pair
- const int maxn=1e5+7;
- const int mod=1e9+7;
- using namespace std;
- int n;
- int h[2][maxn],v[2][maxn];
- int iq[maxn],hq[maxn],vq[maxn];
- int f[2][maxn];
- ll g[2][maxn];
- int MAX[maxn];
- ll CNT[maxn];
- void add1(int x,int w,ll cnt)
- {
- while(x>0)
- {
- if(MAX[x]<w)
- {
- MAX[x]=w;CNT[x]=cnt;
- }
- else if(MAX[x]==w)CNT[x]+=cnt;
- x-=x&-x;
- }
- }
- void add2(int x,int w,ll cnt)
- {
- while(x<maxn)
- {
- if(MAX[x]<w)
- {
- MAX[x]=w;CNT[x]=cnt;
- }
- else if(MAX[x]==w)CNT[x]+=cnt;
- x+=x&-x;
- }
- }
- int query1(int x)
- {
- int ans=0;
- while(x<maxn)
- {
- if(MAX[x]>ans)ans=MAX[x];
- x+=x&-x;
- }
- return ans;
- }
- int query2(int x)
- {
- int ans=0;
- while(x>0)
- {
- if(MAX[x]>ans)ans=MAX[x];
- x-=x&-x;
- }
- return ans;
- }
- ll query_cnt(int x,int val)
- {
- ll ans=0;
- while(x<maxn)
- {
- if(MAX[x]==val)ans+=CNT[x];
- x+=x&-x;
- }
- return ans;
- }
- ll query_cnt2(int x,int val)
- {
- ll ans=0;
- while(x>0)
- {
- if(MAX[x]==val)ans+=CNT[x];
- x-=x&-x;
- }
- return ans;
- }
- bool cmp1(const int& a,const int& b)
- {
- return h[0][a]<h[0][b];
- }
- bool cmp2(const int& a,const int& b)
- {
- return v[0][a]<v[0][b];
- }
- bool cmp3(const int& a,const int& b)
- {
- return h[1][a]<h[1][b];
- }
- void del1(int x)
- {
- while(x>0)
- {
- MAX[x]=CNT[x]=0;
- x-=x&-x;
- }
- }
- void del2(int x)
- {
- while(x<maxn)
- {
- MAX[x]=CNT[x]=0;
- x+=x&-x;
- }
- }
- void cdq1(int l,int r)
- {
- if(l==r)return;
- int mid=(l+r)>>1;
- cdq1(l,mid);
- for(int i=l;i<=r;i++)iq[i]=i;
- sort(iq+l,iq+mid+1,cmp1);
- sort(iq+mid+1,iq+r+1,cmp1);
- int pp=mid;
- for(int i=r;i>mid;i--)
- {
- while(pp>=l&&h[0][iq[pp]]>=h[0][iq[i]])
- {
- add1(v[0][iq[pp]],f[0][iq[pp]],g[0][iq[pp]]);
- pp--;
- }
- int tmp=query1(v[0][iq[i]]);
- if(tmp+1>f[0][iq[i]])
- {
- f[0][iq[i]]=tmp+1;g[0][iq[i]]=query_cnt(v[0][iq[i]],tmp);
- }
- else if(tmp+1==f[0][iq[i]])
- {
- g[0][iq[i]]+=query_cnt(v[0][iq[i]],tmp);
- }
- }
- for(int i=mid;i>pp;i--)
- {
- del1(v[0][iq[i]]);
- }
- cdq1(mid+1,r);
- }
- void cdq2(int l,int r)
- {
- if(l==r)return;
- int mid=(l+r)>>1;
- cdq2(l,mid);
- for(int i=l;i<=r;i++)iq[i]=i;
- sort(iq+l,iq+mid+1,cmp3);
- sort(iq+mid+1,iq+r+1,cmp3);
- int pp=l;
- for(int i=mid+1;i<=r;i++)
- {
- while(pp<=mid&&h[1][iq[pp]]<=h[1][iq[i]])
- {
- add2(v[1][iq[pp]],f[1][iq[pp]],g[1][iq[pp]]);
- pp++;
- }
- int tmp=query2(v[1][iq[i]]);
- if(tmp+1>f[1][iq[i]])
- {
- f[1][iq[i]]=tmp+1;g[1][iq[i]]=query_cnt2(v[1][iq[i]],tmp);
- }
- else if(tmp+1==f[1][iq[i]])
- {
- g[1][iq[i]]+=query_cnt2(v[1][iq[i]],tmp);
- }
- }
- for(int i=l;i<pp;i++)
- {
- del2(v[1][iq[i]]);
- }
- cdq2(mid+1,r);
- }
- int main()
- {
- scanf("%d",&n);
- for(int i=1;i<=n;i++)
- {
- scanf("%d%d",&h[0][i],&v[0][i]);
- iq[i]=i;
- }
- // cout<<222<<endl;
- sort(iq+1,iq+1+n,cmp1);
- int tot=0,las=-1;
- for(int i=1;i<=n;i++)
- {
- if(las!=h[0][iq[i]])
- {
- las=h[0][iq[i]];
- ++tot;
- }
- h[0][iq[i]]=tot;
- }
- tot=0;las=-1;
- for(int i=1;i<=n;i++) iq[i]=i;
- sort(iq+1,iq+1+n,cmp2);
- for(int i=1;i<=n;i++)
- {
- if(las!=v[0][iq[i]])
- {
- las=v[0][iq[i]];
- ++tot;
- }v[0][iq[i]]=tot;
- }
- for(int i=1;i<=n;i++)
- {
- h[1][i]=h[0][n+1-i];
- v[1][i]=v[0][n+1-i];
- }
- for(int i=1;i<=n;i++)
- {
- iq[i]=i;
- f[0][i]=f[1][i]=g[0][i]=g[1][i]=1;
- }
- // cout<<222<<endl;
- cdq1(1,n);cdq2(1,n);
- // cout<<222<<endl;
- int ans=0;
- for(int i=1;i<=n;i++)
- {
- if(f[0][i]>ans)ans=f[0][i];
- }
- printf("%d\n",ans);
- ll sum=0;
- for(int i=1;i<=n;i++)
- {
- if(f[0][i]==ans)sum+=g[0][i];
- }
- //cout<<sum<<endl;
- for(int i=1;i<=n;i++)
- {
- // cout<<g[0][i]<<" "<<g[1][n-i+1]<<endl;
- if(f[0][i]+f[1][n-i+1]!=ans+1)printf("%.8f ",0.0);
- else printf("%.8f ",double(g[0][i]*g[1][n-i+1]/(sum)));
- //cout<<endl;
- // cout<<222<<endl;
- }
- // }
- // for(int i=1;i<=n;i++) cout<<g[0][i]<<" "<<g[1][n-i+1]<<endl;
- }
BZOJ2244 拦截导弹的更多相关文章
- [BZOJ2244]:拦截导弹(DP+CDQ分治+树状数组)
题目传送门 题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度.并且能够拦截任意速度的导弹,但是以后每一发炮弹都不能高于 ...
- 【BZOJ2244】[SDOI2011]拦截导弹(CDQ分治)
[BZOJ2244][SDOI2011]拦截导弹(CDQ分治) 题面 BZOJ 洛谷 题解 不难发现这就是一个三维偏序+\(LIS\)这样一个\(dp\). 那么第一问很好求,直接\(CDQ\)分治之 ...
- [BZOJ2244][SDOI2011]拦截导弹 CDQ分治
2244: [SDOI2011]拦截导弹 Time Limit: 30 Sec Memory Limit: 512 MB Special Judge Description 某国为了防御敌国的导弹 ...
- BZOJ2244 [SDOI2011]拦截导弹 【cdq分治 + 树状数组】
题目 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度.并且能够拦截任意速度的导弹,但是以后每一发炮弹都不能高于前一发的高度,其 ...
- BZOJ2244: [SDOI2011]拦截导弹(CDQ分治,二维LIS,计数)
Description 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度.并且能够拦截任意速度的导弹,但是以后每一发炮弹都不能高 ...
- codevs1409 拦截导弹2
[问题描述]一场战争正在 A 国与 B 国之间如火如荼的展开.B 国凭借其强大的经济实力开发出了无数的远程攻击导弹,B 国的领导人希望,通过这些导弹直接毁灭 A 国的指挥部,从而取得战斗的胜利!当然, ...
- nyoj814_又见拦截导弹_DP
又见拦截导弹 时间限制:3000 ms | 内存限制:65535 KB 难度:3 描述 大家对拦截导弹那个题目应该比较熟悉了,我再叙述一下题意:某国为了防御敌国的导弹袭击,新研制出来一种导弹拦 ...
- 【动态规划】拦截导弹_dilworth定理_最长递增子序列
问题 K: [动态规划]拦截导弹 时间限制: 1 Sec 内存限制: 256 MB提交: 39 解决: 10[提交][状态][讨论版] 题目描述 张琪曼:“老师,修罗场是什么?” 墨老师:“修罗是 ...
- ACM题目————又见拦截导弹
描述 大家对拦截导弹那个题目应该比较熟悉了,我再叙述一下题意:某国为了防御敌国的导弹袭击,新研制出来一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:它的第一发炮弹能够到达任意的高度,但是以后每一发炮 ...
随机推荐
- PHP单元测试PHPUnit
配置说明 1.全局安装phpunit命令脚本 1 2 3 4 5 $ wget https://phar.phpunit.de/phpunit-7.0.phar $ chmod +x phpunit- ...
- [转帖]Oracle 裁员史:技术人死于重组,卒于云计算
Oracle 裁员史:技术人死于重组,卒于云计算 https://www.infoq.cn/article/tm-mcdHCPCI4eEwr6dbY 大厂裁员 我妈妈也总担心我没工作了 怎么还房贷 田 ...
- iphone 分辨率相关
iPhone 1G 320x480 iPhone 3G 320x480 iPhone 3GS 320x480 iPhone 4 640x960 iPhone 4S 640x960 iPhone 5 6 ...
- macbookpro 以及 surface 的技术规格
macbookpro 13.3 英寸 (对角线) LED 背光显示屏 (采用 IPS 技术):初始分辨率 x ( ppi),支持数百万色彩 15.4 英寸 (对角线) LED 背光显示屏 (采用 IP ...
- Eclipse在写java时的BUG
要把这个关掉
- VMWARE中NAT下获取不到IP
1.编辑-虚拟网络编辑器-dhcp设置 2.虚拟机-可移动设备-网络适配器-设置,注意:这里一定要选nat,当初我就是选了桥接,死活上不去,搞了2个小时.
- 【转】解决Maxwell发送Kafka消息数据倾斜问题
最近用Maxwell解析MySQL的Binlog,发送到Kafka进行处理,测试的时候发现一个问题,就是Kafka的Offset严重倾斜,三个partition,其中一个的offset已经快200万了 ...
- 排查 Maxwell can not find database 并且使用 MySQL binlog 解决相关问题
目前我们在使用 Maxwell 在读线上机器的 binlog 同步我们的离线数据库. 这次错误定位上,首先线要确定问题是发生在生产者 还是队列 还是消费者.经过查看各机器上任务的运行日志,定位到了问题 ...
- python3高级编程
1. SMTP发送邮件 internet相关协议: http:网页访问相关,httplib,urllib,xmlrpclib ftp:文件传输相关, ftplib, urllib nntp:新闻和帖子 ...
- 01.javascript之数据类型
1.数据类型 JavaScript一共有六种数据类型.(ES6新增了第七种Symbol类型的值) 数值(Number) 字符串(String) 布尔值(boolean) undefined null ...