【Math for ML】解析几何(Analytic Geometry)
I. 范数(Norm)
定义:
向量空间\(V\)上的范数(norm)是如下函数:
\[
\begin{align}
\|·\|:V→R, \notag \\
x→\|x\| \notag
\end{align}
\]
该函数会赋予每个向量\(x\)自身的长度\(\|x\|∈R\),并且对于\(\lambda∈R,\,\,x,y∈V\)满足如下性质:
- Absolutely homogeneous:\(\|\lambda x\|=|\lambda|\|x\|\)
- Triangle inequality:\(\|x+y\|≤\|x\|+\|y\|\)
Positive definite:\(\|x\|≥0\)且\(\|x\|=0\Leftrightarrow x=0\)
\(L^p\) norm 公式如右: \(\|x\|_p=(\sum_i|x_i|^p)^{\frac{1}{p}}\) for \(p∈R,p≥1\).
1) \(L^1\) Norm
这个也叫Manhattan norm。
二范式在零点附近增长很慢,而且有的机器学习应用需要在零点和非零点之间进行区分,此时二范式显得力不从心,所以我们可以选择一范式,即\(L^1\) norm,其表达式为:\(\|x\|_1=\sum_i|x_i|\).
2) \(L^2\) Norm
这个也叫Euclidean norm。
最常用的是二范式,即\(L^2\) norm,也称为Euclidean norm(欧几里得范数)。因为在机器学习中常用到求导,二范式求导之后只与输入数据本身有关,所以比较实用。
3) \(L^0\) Norm
0范式表示矢量中非0的元素的个数。其实0范式这个说法是不严谨的,因为它不满足第三个条件,but whatever~
4) \(L^∞\) Norm
无穷大范式,也叫max norm,它表示矢量中所有元素绝对值的最大值,即
\[||x||_∞=max |x_i|\]
5) F norm
F norm全称是Frobenius Norm,其表达式如下:
\[||A||_F=\sqrt{\sum_{i,j}A_{i,j}^2} \]
II. 内积(Inner Products)
内积的一个主要目的是用来判断两个向量是否互相正交。另外内积并没有明确的定义,他只是一个广泛的定义,也就是说我们可以根据需要定义内积,例如我们可以把内积定义成点积的形式等等。
1. 点积(Dot Product)
一种常见的内积形式是向量空间\(R^n\)内的点积(Dot Product/ Scalar Product),计算公式如下:
\[x^Ty=\sum_{i=1}^nx_iy_i\]
2. General Inner Products
在对内积给出一般性的定义之前需要做一些铺垫:
双向映射(Bilinear Mapping)
维基百科上的定义:A bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments.
看定义其实不太好懂什么是bilinear mapping,stackexchange上有人给出了简单定义,即可以简单理解为满足如下性质的映射即为双向映射:
\(B(x+y,z) = B(x,z) + B(y,z)\)(additive in the first "coordinate"),
\(B(x,y+z) = B(x,y) + B(x,z)\) (additive in the second "coordinate"),
\(B(cx,y) = cB(x,y) = B(x,cy)\)preserves scaling in each "coordinate").
再简单快捷理解的方式就是将\(B\)理解成实数的乘法,即:
\(B(a,b)=a·b\)
\(B(x+y,z) = (x+y)\cdot z = x\cdot z + y\cdot z = B(x,z) + B(y,z)\)
\(B(x,y+z) = x\cdot (y+z) = x\cdot y + x\cdot z = B(x,y) + B(x,z)\)
\(B(cx,z) = (cx)\cdot z = c\cdot(xz) = x\cdot(cz) = B(x,cz)\)
这样有没有好理解很多?
又一个定义
假设\(V\)为向量空间,\(\Omega:V×V→R\)是一个bilinear mapping,它能将两个向量映射到一个实数上。那么
- 若\(\Omega(x,y)=\Omega(y,x)\),则称\(\Omega\)是对称的。
若\(\forall x∈V \backslash \{0\}:\Omega(x,x)>0,\,\,\,\Omega(0,0)=0\),则称\(\Omega\)为正定(positive definite)。
- 若\(\Omega(x,y)=\Omega(y,x)\),则称\(\Omega\)是对称的。
内积的定义
假设\(V\)为向量空间,\(\Omega:V×V→R\)是一个bilinear mapping,它能将两个向量映射到一个实数上。那么
- 一个正定(positive definite)且对称的bilinear mapping\(\Omega:V×V→R\)被称为在向量空间\(V\)上的内积(inner product),一般记为\(<x,y>\),而不是\(\Omega(x,y)\)。
- \((V,<·,·>)\)称为内积空间(inner product space)
3. 对称正定矩阵(Symmetric,Positive Definite Matrices)
定义:
满足如下条件的对称矩阵\(A∈R^{n×n}\)称为对称正定矩阵或正定矩阵
\[\forall{x∈V\backslash\{0\}}:x^TAx>0\]
若上式中的>换成≥,则该矩阵为对称半正定矩阵。
例子:
正定矩阵\(A\)有如下性质:
- \(A\)的kernel (null space)只包含\(0\),因为当\(x≠0\)时,\(x^TAx>0\)。
- \(A\)的对角元素\(a_{ii}\)都是正的,因为\(a_{ii}=e_i^TAe_i>0\),其中\(e_i\)表示第\(i\)个标准基。
III. 内积的应用
我们可以通过定义内积从而定义长度(length),距离(distance),角度(angle),正交(orthogonal)等。
- 长度&距离
其实长度和距离可以是等价的,定义如下:
假设有内积空间\((V,<·,·>)\),那么如下表达式表示\(x,y∈V\)之间的距离
\[d(x,y)=\|x-y\|=\sqrt{<x-y,x-y>}\]
如果我们使用点积作为内积,那么上面定义的距离则为欧几里得距离(Euclidean distance),其中映射
\[
\begin{align}
d:V×V→R \notag \\
(x,y)→d(x,y) \notag
\end{align}
\]称为metric
- 角度&正交
令\(w∈[0,π]\)表示两向量之间的角度,则有
\[
\begin{align}
cos\,\mathcal{w}&=\frac{<x,y>}{\sqrt{<x,x><y,y>}} \notag \\
(dot\,\,product)&=\frac{x^Ty}{\sqrt{x^Tx\,y^Ty}} \notag \\
\Rightarrow w &= arccos\frac{<x,y>}{\sqrt{<x,x><y,y>}} \notag
\end{align}
\]
由上面的定义可知当\(<x,y>=0\)时,二者正交。
IV. 函数的内积(Inner Product of Functions)
前面介绍的内积都是基于有限的向量,如果扩展到有无限元素的函数,此时的内积如何定义呢?
假设有两个函数\(u(x),v(x)\),二者的内积为:\(<u,v>=\int_a^b{u(x)v(x)dx}, \,\, a,b<∞\)
当如上积分为0时,表示两个函数正交。
【Math for ML】解析几何(Analytic Geometry)的更多相关文章
- 【Math for ML】矩阵分解(Matrix Decompositions) (下)
[Math for ML]矩阵分解(Matrix Decompositions) (上) I. 奇异值分解(Singular Value Decomposition) 1. 定义 Singular V ...
- 【Math for ML】向量微积分(Vector Calculus)
I. 向量梯度 假设有一个映射函数为\(f:R^n→R^m\)和一个向量\(x=[x_1,...,x_n]^T∈R^n\),那么对应的函数值的向量为\(f(x)=[f_1(x),...,f_m(x)] ...
- 【Math for ML】矩阵分解(Matrix Decompositions) (上)
I. 行列式(Determinants)和迹(Trace) 1. 行列式(Determinants) 为避免和绝对值符号混淆,本文一般使用\(det(A)\)来表示矩阵\(A\)的行列式.另外这里的\ ...
- 【Math for ML】线性代数-单射,满射,双射,同构,同态,仿射
I. 映射(Mapping) 1. 单射(Injective) 函数f 是单射当且仅当若f(x) = f(y) 则 x = y. 例子: f(x) = x+5 从实数集\(R\)到\(R\)是个单射函 ...
- 【Math for ML】线性代数之——向量空间
I. Groups 在介绍向量空间之前有必要介绍一下什么Group,其定义如下: 注意定义中的\(\bigotimes\)不是乘法,而是一种运算符号的统一标识,可以是乘法也可以是加法等. 此外,如果\ ...
- Reviewing notes 1.1 of Analytic geometry
Chapter 1 Vector Algebra ♦ Vector Space Vector and vector space A vector is described as a quantity ...
- How do I learn machine learning?
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644 How Can I Learn X? ...
- 【转】科大校长给数学系学弟学妹的忠告&本科数学参考书
1.老老实实把课本上的题目做完.其实说科大的课本难,我以为这话不完整.科大的教材,就数学系而言还是讲得挺清楚的,难的是后面的习题.事实上做1道难题的收获是做10道简单题所不能比的. 2.每门数学必修课 ...
- 特征向量-Eigenvalues_and_eigenvectors#Graphs 线性变换
总结: 1.线性变换运算封闭,加法和乘法 2.特征向量经过线性变换后方向不变 https://en.wikipedia.org/wiki/Linear_map Examples of linear t ...
随机推荐
- git ssh https 踩坑记 ---- 域账号密码更新
前几天突然通知要更新公司的域账号密码,然后git pull就一直报 fatal: Authentication failed for 'https://git ... 很奇怪的是,有一个项目git p ...
- JVM 内存初学 堆(heap)、栈(stack)和方法区(method)
这两天看了一下深入浅出JVM这本书,推荐给高级的java程序员去看,对你了解JAVA的底层和运行机制有比较大的帮助.废话不想讲了.入主题:先了解具体的概念:JAVA的JVM的内存可分为3个区:堆(he ...
- 【转】第8章 前摄器(Proactor):用于为异步事件多路分离和分派处理器的对象行为模式
目录: Reactor(反应堆)和Proactor(前摄器) <I/O模型之三:两种高性能 I/O 设计模式 Reactor 和 Proactor> <[转]第8章 前摄器(Proa ...
- Java NIO系列教程(七) selector原理 Epoll版的Selector
目录: Reactor(反应堆)和Proactor(前摄器) <I/O模型之三:两种高性能 I/O 设计模式 Reactor 和 Proactor> <[转]第8章 前摄器(Proa ...
- JAVA核心技术I---JAVA基础知识(类的继承)
一:基本概念同C++一致 二:继承演示 .将共同点提取出来,即形成了父类/基类/超类 –Parent class/Base class/Super class .而其他类则自动成为子类/派生类 –Ch ...
- springboot下整合各种配置文件
本博是在springboot下整合其他中间件,比如,mq,redis,durid,日志...等等 以后遇到再更.springboot真是太便捷了,让我们赶紧涌入到springboot的怀抱吧. ap ...
- java基础之反射---重要
java反射: 反射是框架设计的灵魂 (使用的前提条件:必须先得到代表的字节码的Class,Class类用于表示.class文件(字节码)): 1:获取Class字节码文件对象的三种方式: /** ...
- VS2019预览版发布了
VS2019正式版已发布:https://www.cnblogs.com/zhaogaojian/p/10648904.html 1.点击下载https://visualstudio.microso ...
- 三十三、Linux 进程与信号——中断系统调用和函数可重入性
33.1 中断系统调用 进程调用 “慢” 系统调用时,如果发生了信号,内核会重启系统调用. 慢系统调用 可能会永久阻塞的系统调用 从终端设备.管道或网络设备上的文件读取 向上述文件写入 某些设备上的文 ...
- 二十九、Linux 进程与信号——minishell(2)
编程内容: 1.完成 echo env export 命令 2.完成前后台进程 3.完成重定向 完整代码如下: 29.1 主函数.通用头文件和Makefile 29.1.1 主函数 mshell_m ...