Little Hi and Little Ho are playing a game. There is an integer array in front of them. They take turns (Little Ho goes first) to select a number from either the beginning or the end of the array. The number will be added to the selecter's score and then be removed from the array.

Given the array what is the maximum score Little Ho can get? Note that Little Hi is smart and he always uses the optimal strategy.

Input

The first line contains an integer N denoting the length of the array. (1 ≤ N ≤ 1000)

The second line contains N integers A1, A2, ... AN, denoting the array. (-1000 ≤ Ai ≤ 1000)

Output

Output the maximum score Little Ho can get.

Sample Input

4
-1 0 100 2

Sample Output

99

官方题解 http://hihocoder.com/discuss/question/4984
 /*
问题 两人轮流从一个数组的头或者尾选择一个数累加,并且将其删除,问先手累加的数最大是能多少
抽象问题 由于每次只能从数组首/尾拿走一个数,所以小Hi和小Ho在任何时候面对的残局都只可能是一段连续的子数组A[i..j]。
变量 i j 最多能获得的得分,其中i,j表示区间端点下标
定义状态 我们不妨用f[i][j]表示当面对A[i..j],先手最多能获得的得分。
并且如果我们能计算出所有f[i][j]的值,那么显然f[1][n]就是最终答案。
状态转移
i=j时,f[i][j]=A[i];
i<j时,此时先手面临A[i...j],若取A[i],则后手面临A[i+1...j],最多能得f[i+1][j]分,那么先手当前得分为
区间和减去后手最多得分(其实此时的后手也是先手,因为都符合每次都作出最优选择的条件)
即sum(A[i...j]) - f[i+1][j];
同理,若先手取A[j],则为sum(A[i...j]) - f[i][j-1]; 接下来就是写代码了(废话),我想说的是,状态方程虽然列出来了,怎么用也是需要思考的
我的做法是推理,要想计算f[i][j]需要先计算f[i+1][j]和f[i][j-1]
容易看出,i需要递减循环,j需要递增循环
故得出代码如下
*/
#include<stdio.h>
int max(int x, int y){
return x > y ? x : y;
}
int min(int x, int y){
return x > y ? y : x;
}
int n,A[],sum[],f[][];//大数组开成全局
int main()
{
int i,j;
while(scanf("%d",&n) != EOF)
{
sum[]=;
for(i=;i<=n;i++){
scanf("%d",&A[i]);
sum[i] = sum[i-] + A[i];
}
for(i=n;i>=;i--){
for(j=;j<=n;j++){
if(i == j)
f[i][j]=A[i];
else if(i < j)
f[i][j]=sum[j] - sum[i-] - min(f[i+][j],f[i][j-]);
//f[i][j]=max(sum[j]-sum[i-1] - f[i+1][j],sum[j]-sum[i-1] - f[i][j-1]);
//i > j无需处理
}
}
printf("%d\n",f[][n]);
}
return ;
}


 

A Game(区间DP)的更多相关文章

  1. 【BZOJ-4380】Myjnie 区间DP

    4380: [POI2015]Myjnie Time Limit: 40 Sec  Memory Limit: 256 MBSec  Special JudgeSubmit: 162  Solved: ...

  2. 【POJ-1390】Blocks 区间DP

    Blocks Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 5252   Accepted: 2165 Descriptio ...

  3. 区间DP LightOJ 1422 Halloween Costumes

    http://lightoj.com/volume_showproblem.php?problem=1422 做的第一道区间DP的题目,试水. 参考解题报告: http://www.cnblogs.c ...

  4. BZOJ1055: [HAOI2008]玩具取名[区间DP]

    1055: [HAOI2008]玩具取名 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1588  Solved: 925[Submit][Statu ...

  5. poj2955 Brackets (区间dp)

    题目链接:http://poj.org/problem?id=2955 题意:给定字符串 求括号匹配最多时的子串长度. 区间dp,状态转移方程: dp[i][j]=max ( dp[i][j] , 2 ...

  6. HDU5900 QSC and Master(区间DP + 最小费用最大流)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5900 Description Every school has some legends, ...

  7. BZOJ 1260&UVa 4394 区间DP

    题意: 给一段字符串成段染色,问染成目标串最少次数. SOL: 区间DP... DP[i][j]表示从i染到j最小代价 转移:dp[i][j]=min(dp[i][j],dp[i+1][k]+dp[k ...

  8. 区间dp总结篇

    前言:这两天没有写什么题目,把前两周做的有些意思的背包题和最长递增.公共子序列写了个总结.反过去写总结,总能让自己有一番收获......就区间dp来说,一开始我完全不明白它是怎么应用的,甚至于看解题报 ...

  9. Uva 10891 经典博弈区间DP

    经典博弈区间DP 题目链接:https://uva.onlinejudge.org/external/108/p10891.pdf 题意: 给定n个数字,A和B可以从这串数字的两端任意选数字,一次只能 ...

  10. 2016 年沈阳网络赛---QSC and Master(区间DP)

    题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=5900 Problem Description Every school has some legend ...

随机推荐

  1. numpy和pandas和matplotlib用法

    numpy result = [ [0, 10, 20, 30, 40], [10, 23, 33, 43, 53], [20, 83, 23, 55, 33], [30, 93, 44, 22, 5 ...

  2. [require-js]向下滑动ajax加载的javascript实现

    define(function(){ function ScrollMoreInfo($wraper , loadDataFunc , json_ids , perNum , tpl_info) { ...

  3. unigui1404在delphi10.2.2安装

    unigui1404在delphi10.2.2安装 UNIGUI1404不能直接在DELPHI10.2.2下面编译安装,在10.2.1下面是可以的. 这里讲下怎样安装的方法: 1)执行FMSoft_u ...

  4. 关于getProperties的一点记录

    写了一很简单的获取配置文件的代码,结果怎么都在报空指针,经过上网查,直到要这样写才不会报: InputStream is = getClass().getClassLoader().getResour ...

  5. IDFA

    https://zhuanlan.zhihu.com/p/24161646 IDFA全称是identifier for advertisers,在了解IDFA之前,我们需要了解另一个概念,叫UDID. ...

  6. 12_python_生成器

    一.生成器 python中有三种方式获取生成器 (1)通过生成器函数 (2)通过各种推导式来实现生成器 (3)通过数据的转换也可以获取生成器   1.只要函数中存在了yield,那么这个函数就是一个生 ...

  7. 【disruptor】2、disruptor中生产者线程与消费者之间的协调

    由于ringbuffer是一个环形的队列,那么生产者和消费者在遍历这个队列的时候,如何制衡呢? 1.生产快,消费慢,数据丢失? 生产者速度过快,导致一个对象还没消费完,就循环生产了一个新的对象要加入r ...

  8. JS数组去重的几种常见方法

    JS数组去重的几种常见方法 一.简单的去重方法 // 最简单数组去重法 /* * 新建一新数组,遍历传入数组,值不在新数组就push进该新数组中 * IE8以下不支持数组的indexOf方法 * */ ...

  9. odoo开发笔记--模型字段compute用法

    compute属性,实现的主要功能是,前端界面选择某个字段的时候,指定与该字段关联的其他字段可以关联,并联动的显示. 可以和inverse属性同时使用,不加inverse属性的话,前端界面的显示效果只 ...

  10. MySQL命令行登陆,远程登陆MySQL

    注: MySQL图形界面管理工具[navicat 10.1.8中文绿色版] 下载地址:http://www.t00y.com/file/18393836 备用地址:http://ProCircle.q ...