深入理解多线程(一)——Synchronized的实现原理中介绍过关于Synchronize的实现原理,无论是同步方法还是同步代码块,无论是ACC_SYNCHRONIZED还是monitorentermonitorexit都是基于Monitor实现的,那么这篇来介绍下什么是Monitor。

操作系统中的管程

如果你在大学学习过操作系统,你可能还记得管程(monitors)在操作系统中是很重要的概念。同样Monitor在java同步机制中也有使用。

管程 (英语:Monitors,也称为监视器) 是一种程序结构,结构内的多个子程序(对象或模块)形成的多个工作线程互斥访问共享资源。这些共享资源一般是硬件设备或一群变量。管程实现了在一个时间点,最多只有一个线程在执行管程的某个子程序。与那些通过修改数据结构实现互斥访问的并发程序设计相比,管程实现很大程度上简化了程序设计。 管程提供了一种机制,线程可以临时放弃互斥访问,等待某些条件得到满足后,重新获得执行权恢复它的互斥访问。

Java线程同步相关的Moniter

在多线程访问共享资源的时候,经常会带来可见性和原子性的安全问题。为了解决这类线程安全的问题,Java提供了同步机制、互斥锁机制,这个机制保证了在同一时刻只有一个线程能访问共享资源。这个机制的保障来源于监视锁Monitor,每个对象都拥有自己的监视锁Monitor。

先来举个例子,然后我们在上源码。我们可以把监视器理解为包含一个特殊的房间的建筑物,这个特殊房间同一时刻只能有一个客人(线程)。这个房间中包含了一些数据和代码。

如果一个顾客想要进入这个特殊的房间,他首先需要在走廊(Entry Set)排队等待。调度器将基于某个标准(比如 FIFO)来选择排队的客户进入房间。如果,因为某些原因,该客户客户暂时因为其他事情无法脱身(线程被挂起),那么他将被送到另外一间专门用来等待的房间(Wait Set),这个房间的可以可以在稍后再次进入那件特殊的房间。如上面所说,这个建筑屋中一共有三个场所。

总之,监视器是一个用来监视这些线程进入特殊的房间的。他的义务是保证(同一时间)只有一个线程可以访问被保护的数据和代码。

Monitor其实是一种同步工具,也可以说是一种同步机制,它通常被描述为一个对象,主要特点是:

对象的所有方法都被“互斥”的执行。好比一个Monitor只有一个运行“许可”,任一个线程进入任何一个方法都需要获得这个“许可”,离开时把许可归还。

通常提供singal机制:允许正持有“许可”的线程暂时放弃“许可”,等待某个谓词成真(条件变量),而条件成立后,当前进程可以“通知”正在等待这个条件变量的线程,让他可以重新去获得运行许可。

监视器的实现

在Java虚拟机(HotSpot)中,Monitor是基于C++实现的,由ObjectMonitor实现的,其主要数据结构如下:

  ObjectMonitor() {
_header = NULL;
_count = 0;
_waiters = 0,
_recursions = 0;
_object = NULL;
_owner = NULL;
_WaitSet = NULL;
_WaitSetLock = 0 ;
_Responsible = NULL ;
_succ = NULL ;
_cxq = NULL ;
FreeNext = NULL ;
_EntryList = NULL ;
_SpinFreq = 0 ;
_SpinClock = 0 ;
OwnerIsThread = 0 ;
}

源码地址:objectMonitor.hpp

ObjectMonitor中有几个关键属性:

_owner:指向持有ObjectMonitor对象的线程

_WaitSet:存放处于wait状态的线程队列

_EntryList:存放处于等待锁block状态的线程队列

_recursions:锁的重入次数

_count:用来记录该线程获取锁的次数

当多个线程同时访问一段同步代码时,首先会进入_EntryList队列中,当某个线程获取到对象的monitor后进入_Owner区域并把monitor中的_owner变量设置为当前线程,同时monitor中的计数器_count加1。即获得对象锁。

若持有monitor的线程调用wait()方法,将释放当前持有的monitor,_owner变量恢复为null_count自减1,同时该线程进入_WaitSet集合中等待被唤醒。若当前线程执行完毕也将释放monitor(锁)并复位变量的值,以便其他线程进入获取monitor(锁)。如下图所示

ObjectMonitor类中提供了几个方法:

获得锁

void ATTR ObjectMonitor::enter(TRAPS) {
Thread * const Self = THREAD ;
void * cur ;
//通过CAS尝试把monitor的`_owner`字段设置为当前线程
cur = Atomic::cmpxchg_ptr (Self, &_owner, NULL) ;
//获取锁失败
if (cur == NULL) { assert (_recursions == 0 , "invariant") ;
assert (_owner == Self, "invariant") ;
// CONSIDER: set or assert OwnerIsThread == 1
return ;
}
// 如果旧值和当前线程一样,说明当前线程已经持有锁,此次为重入,_recursions自增,并获得锁。
if (cur == Self) {
// TODO-FIXME: check for integer overflow! BUGID 6557169.
_recursions ++ ;
return ;
} // 如果当前线程是第一次进入该monitor,设置_recursions为1,_owner为当前线程
if (Self->is_lock_owned ((address)cur)) {
assert (_recursions == 0, "internal state error");
_recursions = 1 ;
// Commute owner from a thread-specific on-stack BasicLockObject address to
// a full-fledged "Thread *".
_owner = Self ;
OwnerIsThread = 1 ;
return ;
} // 省略部分代码。
// 通过自旋执行ObjectMonitor::EnterI方法等待锁的释放
for (;;) {
jt->set_suspend_equivalent();
// cleared by handle_special_suspend_equivalent_condition()
// or java_suspend_self() EnterI (THREAD) ; if (!ExitSuspendEquivalent(jt)) break ; //
// We have acquired the contended monitor, but while we were
// waiting another thread suspended us. We don't want to enter
// the monitor while suspended because that would surprise the
// thread that suspended us.
//
_recursions = 0 ;
_succ = NULL ;
exit (Self) ; jt->java_suspend_self();
}
}

释放锁

void ATTR ObjectMonitor::exit(TRAPS) {
Thread * Self = THREAD ;
//如果当前线程不是Monitor的所有者
if (THREAD != _owner) {
if (THREAD->is_lock_owned((address) _owner)) { //
// Transmute _owner from a BasicLock pointer to a Thread address.
// We don't need to hold _mutex for this transition.
// Non-null to Non-null is safe as long as all readers can
// tolerate either flavor.
assert (_recursions == 0, "invariant") ;
_owner = THREAD ;
_recursions = 0 ;
OwnerIsThread = 1 ;
} else {
// NOTE: we need to handle unbalanced monitor enter/exit
// in native code by throwing an exception.
// TODO: Throw an IllegalMonitorStateException ?
TEVENT (Exit - Throw IMSX) ;
assert(false, "Non-balanced monitor enter/exit!");
if (false) {
THROW(vmSymbols::java_lang_IllegalMonitorStateException());
}
return;
}
}
// 如果_recursions次数不为0.自减
if (_recursions != 0) {
_recursions--; // this is simple recursive enter
TEVENT (Inflated exit - recursive) ;
return ;
} //省略部分代码,根据不同的策略(由QMode指定),从cxq或EntryList中获取头节点,通过ObjectMonitor::ExitEpilog方法唤醒该节点封装的线程,唤醒操作最终由unpark完成。

除了enter和exit方法以外,objectMonitor.cpp中还有

void      wait(jlong millis, bool interruptable, TRAPS);
void notify(TRAPS);
void notifyAll(TRAPS);

等方法。

总结

上面介绍的就是HotSpot虚拟机中Moniter的的加锁以及解锁的原理。

通过这篇文章我们知道了sychronized加锁的时候,会调用objectMonitor的enter方法,解锁的时候会调用exit方法。事实上,只有在JDK1.6之前,synchronized的实现才会直接调用ObjectMonitor的enterexit,这种锁被称之为重量级锁。为什么说这种方式操作锁很重呢?

  • Java的线程是映射到操作系统原生线程之上的,如果要阻塞或唤醒一个线程就需要操作系统的帮忙,这就要从用户态转换到核心态,因此状态转换需要花费很多的处理器时间,对于代码简单的同步块(如被synchronized修饰的get 或set方法)状态转换消耗的时间有可能比用户代码执行的时间还要长,所以说synchronized是java语言中一个重量级的操纵。

所以,在JDK1.6中出现对锁进行了很多的优化,进而出现轻量级锁,偏向锁,锁消除,适应性自旋锁,锁粗化(自旋锁在1.4就有 只不过默认的是关闭的,jdk1.6是默认开启的),这些操作都是为了在线程之间更高效的共享数据 ,解决竞争问题。后面的文章会继续介绍这几种锁以及他们之间的关系。

Java Synchronized实现原理

JVM源码分析之Object.wait/notify实现

Linux Kernel CMPXCHG函数分析

从jvm源码看synchronized

from: https://www.hollischuang.com/archives/2030

深入理解多线程(四)—— Moniter的实现原理的更多相关文章

  1. 深入理解多线程(五)—— Java虚拟机的锁优化技术

    本文是<深入理解多线程>的第五篇文章,前面几篇文章中我们从synchronized的实现原理开始,一直介绍到了Monitor的实现原理. 前情提要 通过前面几篇文章,我们已经知道: 1.同 ...

  2. 深入理解Java并发之synchronized实现原理

    深入理解Java类型信息(Class对象)与反射机制 深入理解Java枚举类型(enum) 深入理解Java注解类型(@Annotation) 深入理解Java类加载器(ClassLoader) 深入 ...

  3. 深入理解并发编程之----synchronized实现原理

    版权声明:本文为博主原创文章,请尊重原创,未经博主允许禁止转载,保留追究权 https://blog.csdn.net/javazejian/article/details/72828483 [版权申 ...

  4. TCP协议—三次握手四次挥手的原理<转>

    三次握手四次挥手的原理   TCP是面向连接的,无论哪一方向另一方发送数据之前,都必须先在双方之间建立一条连接.在TCP/IP协议中,TCP 协议提供可靠的连接服务,连接是通过三次握手进行初始化的.三 ...

  5. C# 多线程编程第一步——理解多线程

    一.进程.线程及多线程的概念 什么是多线程呢?不理解. 那什么是线程呢?说到线程就不得不说说进程.我在网上搜索也搜索了一些资料,大部分所说的进程其实是很抽象的东西.通俗的来讲,进程就是一个应用程序开始 ...

  6. 图解ARP协议(四)代理ARP原理与实践(“善意的欺骗”)

    一.代理ARP概述 我:当电脑要访问互联网上的服务器,目标MAC是什么? 很多小伙伴在刚学习网络协议的时候,经常这样直接回应:不就是服务器的MAC嘛! 这时我会反问:那电脑怎么拿到这个服务器的MAC地 ...

  7. 深入理解NIO(三)—— NIO原理及部分源码的解析

    深入理解NIO(三)—— NIO原理及部分源码的解析 欢迎回到淦™的源码看爆系列 在看完前面两个系列之后,相信大家对NIO也有了一定的理解,接下来我们就来深入源码去解读它,我这里的是OpenJDK-8 ...

  8. RocketMQ详解(四)核心设计原理

    专题目录 RocketMQ详解(一)原理概览 RocketMQ详解(二)安装使用详解 RocketMQ详解(三)启动运行原理 RocketMQ详解(四)核心设计原理 RocketMQ详解(五)总结提高 ...

  9. linux基础-第十四单元 Linux网络原理及基础设置

    第十四单元 Linux网络原理及基础设置 三种网卡模式图 使用ifconfig命令来维护网络 ifconfig命令的功能 ifconfig命令的用法举例 使用ifup和ifdown命令启动和停止网卡 ...

随机推荐

  1. C语言:指针实现交换两个变量的值

    用指针交换两个变量的值(10分) 题目内容: 用指针交换两个变量的值 主函数参考: int main( ) { int a,b; scanf("%d%d",&a,& ...

  2. Angular和Vue.js

    Angular和Vue.js Vue.js 是开源的 JavaScript 框架,能够帮助开发者构建出美观的 Web 界面.当和其它网络工具配合使用时,Vue.js 的优秀功能会得到大大加强.如今,已 ...

  3. 初识PHP(一)

    做为一名合格的前端开发攻城狮,了解一门服务端语言是必须的,所以我选了php.都说学的第一门语言对第二门语言会产生较大的影响,确实,每当我看到一个php知识点时,就同时会想到这个知识点在Javascri ...

  4. Mysql Lock wait timeout exceeded; try restarting transaction的问题

    今天在后台跑任务的时候,发现了数据库报错1205 - Lock wait timeout exceeded; try restarting transaction.问题原因是因为表的事务锁,以下是解决 ...

  5. Linux usb 驱动程序范例

                     linxu_usb驱动之框架 USB骨架程序可以被看做一个最简单的USB设备驱动的实例. 首先看看USB骨架程序的usb_driver的定义 [cpp] view p ...

  6. luogu P1502 窗口的星星

    题目链接 P1502 窗口的星星 题解 扫描线+线段树 线段树的每一个节点处理的是左边框放在当前x-1位置时的框内星星的亮度大小 按照x坐标进行离散化,得到离散化后每一个坐标x的可影响的范围 维护扫描 ...

  7. SPOJ11414 COT3 博弈论 + Trie树合并

    考虑对于每个子树从下往上依次考虑 对于叶子节点而言,如果可以染色,那么其\(sg\)值为\(1\),否则为\(0\) 考虑往上合并 如果选择了\(x\),那么后继状态就是其所有子树 如果选了其他子树中 ...

  8. HDU.4035.Maze(期望DP)

    题目链接 (直接)设\(F(i)\)为在\(i\)点走出迷宫的期望步数.答案就是\(F(1)\). 令\(p_i=1-k_i-e_i\),表示\(i\)点沿着边走的概率:\(d_i=dgr[i]\), ...

  9. OpenJ_POJ C16B Robot Game 打表找规律

    Robot Game 题目连接: http://acm.hust.edu.cn/vjudge/contest/122701#problem/B Description Sgeoghy has addi ...

  10. 使用Google-Colab训练PyTorch神经网络

    Colaboratory 是免费的 Jupyter 笔记本环境,不需要进行任何设置就可以使用,并且完全在云端运行.关键是还有免费的GPU可以使用!用Colab训练PyTorch神经网络步骤如下: 1: ...