/*
找出了一个dp式子
是否能够倍增优化
我推的矩阵不太一样

1 0 0 0 0
0 0 0 0 -1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 2 求得逆矩阵大概就是 1 0 0 0 0
0 2 0 0 1
0 0 1 0 0
0 0 0 1 0
0 -1 0 0 0
*/
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<queue>
#define ll long long
#define M 100010
#define log lllgggi
#define mmp make_pair
using namespace std;
int read()
{
int nm = 0, f = 1;
char c = getchar();
for(; !isdigit(c); c = getchar()) if(c == '-') f = -1;
for(; isdigit(c); c = getchar()) nm = nm * 10 + c - '0';
return nm * f;
}
const int mod = 1000000007;
char s[M]; void add(int &x, int y)
{
x += y;
x -= x >= mod ? mod : 0;
x += x < 0 ? mod : 0;
}
struct Mx{
int a[10][10];
Mx()
{
memset(a, 0, sizeof(a));
}
}be[9], iv[9], an[M], bn[M]; Mx mul(Mx a, Mx b)
{
Mx c;
for(int i = 0; i <= 9; i++)
{
for(int j = 0; j <= 9; j++)
{
for(int k = 0; k <= 9; k++)
{
add(c.a[i][k], 1ll * a.a[i][j] * b.a[j][k] % mod);
}
}
}
return c;
} int n, a[M], sum, q, f[10], g[10]; int main()
{
scanf("%s", s + 1);
n = strlen(s + 1);
for(int i = 1; i <= n; i++) a[i] = s[i] - 'a';
for(int k = 0; k <= 8; k++)
{
for(int i = 0; i <= 8; i++)
{
if(i == k)
{
be[k].a[9][k] = 1;
be[k].a[k][9] = mod - 1;
iv[k].a[i][i] = 2;
iv[k].a[i][9] = 1;
iv[k].a[9][i] = mod - 1;
}
else
{
be[k].a[i][i] = 1;
iv[k].a[i][i] = 1;
}
}
be[k].a[9][9] = 2;
}
for(int i = 0; i <= 9; i++) an[0].a[i][i] = bn[0].a[i][i] = 1;
for(int i = 1; i <= n; i++) an[i] = mul(an[i - 1], be[a[i]]), bn[i] = mul(iv[a[i]], bn[i - 1]);
q = read(); while(q--)
{
int l = read(), r = read();
memset(f, 0, sizeof(f));
f[9] = 1;
memset(g, 0, sizeof(g));
for(int i = 0; i <= 9; i++)
{
for(int j = 0; j <= 9; j++)
{
add(g[i], 1ll * f[j] * bn[l - 1].a[j][i] % mod);
}
}
memcpy(f, g, sizeof(f));
int ans = 0;
for(int j = 0; j <= 9; j++)
{
add(ans, 1ll * f[j] * an[r].a[j][9] % mod);
}
cout << (ans - 1 + mod) % mod << "\n";
}
return 0;
}

「2017 山东一轮集训 Day6」子序列(矩阵快速幂)的更多相关文章

  1. loj#6074. 「2017 山东一轮集训 Day6」子序列(矩阵乘法 dp)

    题意 题目链接 Sol 设\(f[i][j]\)表示前\(i\)个位置中,以\(j\)为结尾的方案数. 转移的时候判断一下\(j\)是否和当前位置相同 然后发现可以用矩阵优化,可以分别求出前缀积和逆矩 ...

  2. LOJ #6074. 「2017 山东一轮集训 Day6」子序列

    #6074. 「2017 山东一轮集训 Day6」子序列 链接 分析: 首先设f[i][j]为到第i个点,结尾字符是j的方案数,这个j一定是从i往前走,第一个出现的j,因为这个j可以代替掉前面所有j. ...

  3. loj#6076「2017 山东一轮集训 Day6」三元组 莫比乌斯反演 + 三元环计数

    题目大意: 给定\(a, b, c\),求\(\sum \limits_{i = 1}^a \sum \limits_{j = 1}^b \sum \limits_{k = 1}^c [(i, j) ...

  4. LOJ#6075. 「2017 山东一轮集训 Day6」重建

    题目描述: 给定一个 n个点m 条边的带权无向连通图 ,以及一个大小为k 的关键点集合S .有个人要从点s走到点t,现在可以对所有边加上一个非负整数a,问最大的a,使得加上a后,满足:s到t的最短路长 ...

  5. Loj #6069. 「2017 山东一轮集训 Day4」塔

    Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都 ...

  6. Loj #6073.「2017 山东一轮集训 Day5」距离

    Loj #6073.「2017 山东一轮集训 Day5」距离 Description 给定一棵 \(n\) 个点的边带权的树,以及一个排列$ p\(,有\)q $个询问,给定点 \(u, v, k\) ...

  7. Loj 6068. 「2017 山东一轮集训 Day4」棋盘

    Loj 6068. 「2017 山东一轮集训 Day4」棋盘 题目描述 给定一个 $ n \times n $ 的棋盘,棋盘上每个位置要么为空要么为障碍.定义棋盘上两个位置 $ (x, y),(u, ...

  8. 「2017 山东一轮集训 Day5」苹果树

    「2017 山东一轮集训 Day5」苹果树 \(n\leq 40\) 折半搜索+矩阵树定理. 没有想到折半搜索. 首先我们先枚举\(k\)个好点,我们让它们一定没有用的.要满足这个条件就要使它只能和坏 ...

  9. 【LOJ#6066】「2017 山东一轮集训 Day3」第二题(哈希,二分)

    [LOJ#6066]「2017 山东一轮集训 Day3」第二题(哈希,二分) 题面 LOJ 题解 要哈希是很显然的,那么就考虑哈希什么... 要找一个东西可以表示一棵树,所以我们找到了括号序列. 那么 ...

随机推荐

  1. mysql之 redo log

    重做日志(redo log) 前言:之前一直弄不清楚 mysql 里面 bin log 和 innodb log 文件的区别,在脑子里面一直有个疑问 binlog 日志文件已经可以用来进行数据库的日志 ...

  2. 主流开源SQL(on Hadoop)总结

    转载至 大数据杂谈 (BigdataTina2016),同时参考学习 http://www.cnblogs.com/barrywxx/p/4257166.html 进行整理. 使用SQL 引擎一词是有 ...

  3. PHP-不同Str 拼接方法性能对比

    问题 在PHP中,有多种字符串拼接的方式可供选择,共有: 1 . , .= , sprintf, vprintf, join, implode 那么,那种才是最快的,或者那种才是最适合业务使用的,需要 ...

  4. golang中defer的详解 转自https://blog.csdn.net/skh2015java/article/details/77081250

    Go里的defer很有用,尤其在很多执行模块化操作时,初始化时给各个需要执行的模块传入参数,但是这些参数有些事在模块执行过程中才赋值的. 这时候有了defer就不会把代码写的很凌乱. Go的defer ...

  5. sofa-rpc 服务端源码流程走读

    sofa-rpc是阿里开源的一款高性能的rpc框架,这篇文章主要是对sofa-rpc provider启动服务流程的一个代码走读,下面是我简单绘制的一个基本的关系流程图 下面我们根据sofa-rpc代 ...

  6. java集合之List源码解析

    List是java重要的数据结构之一,我们经常接触到的有ArrayList.Vector和LinkedList三种,他们都继承来自java.util.Collection接口,类图如下 接下来,我们对 ...

  7. Android的路径信息[转]

    Delphi早就把IO相关的都提取到System.IoUtils单元中了. 路径操作就使用TPath的方法都很方便.usesSystem.IoUtilsTPath.GetTempPath//临时目录T ...

  8. 并行计算——理想的PRAM模型

    PRAM(Parallel Random Access Machine)模型是多指令流多数据流(MIMD)并行机中的一种具有共享存储的模型.它假设有一个无限大容量的共享存储器,并且有多个功能相同的处理 ...

  9. TableLayoutPanel 行高列宽设置

    /// <summary> /// 获取TableLayoutPanel指定行的高度 /// </summary> /// <param name="layou ...

  10. CAD求交点函数

    public void IntersectWith( Entity entityPointer, Intersect intersectType, Point3dCollection points, ...