http://www.lydsy.com/JudgeOnline/problem.php?id=4557

假设当前到了x的子树,现在是合并 x的第k个子树

f[x][j] 表示x的前k-1个子树该覆盖的完全覆盖,而且还能向上覆盖j层的最小代价

这个向上是针对x来说的,即可以向x的祖先方向再覆盖j层

对于第k个子树的意义就是,兄弟子树放置的守卫可以帮x的第k个子树覆盖前j层(第1层为x的子节点)

那么相应的就要有一个状态来表示这个 可以让兄弟子树 帮忙覆盖 的前j层

g[x][j] 表示还需要覆盖x的前k个子树中的前j层,且第j层以下该覆盖的完全覆盖(第1层为x)的最小代价

状态转移:

设x的第k个子节点为y

向x的上方覆盖j层,只需要x的子节点中有一个子节点z能向上覆盖j+1层 即可

所以f的转移有两种:z是前k-1个子节点中的,z是第k个子节点

f[x][j]=min(f[x][j]+g[y][j] ,f[y][j+1]+g[x][j+1])

g[x][j]+=g[y][j-1]

但是有可能x 再向上恰好覆盖j层的代价要小于再向上恰好覆盖j-1层的代价

即覆盖的更多代价反而要小

所以将f的状态定义改为 向上覆盖至少j层的最小代价

同理,g的状态定义改为还需要覆盖至多j层的最小代价

对f[x][]做一个后缀最小值,g[x][]做一个前缀最小值

#include<cstdio>
#include<iostream> using namespace std; #define N 500001 int d;
int w[N];
bool use[N]; int front[N],to[N<<],nxt[N<<],tot; int f[N][],g[N][]; void read(int &x)
{
x=; char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)) { x=x*+c-''; c=getchar(); }
} void add(int u,int v)
{
to[++tot]=v; nxt[tot]=front[u]; front[u]=tot;
to[++tot]=u; nxt[tot]=front[v]; front[v]=tot;
} void dfs(int x,int fa)
{
for(int i=;i<=d;++i) f[x][i]=w[x];
if(use[x]) g[x][]=f[x][]=w[x];
f[x][d+]=1e9;
int t;
for(int i=front[x];i;i=nxt[i])
{
t=to[i];
if(t!=fa)
{
dfs(t,x);
for(int j=;j<=d;++j) f[x][j]=min(f[x][j]+g[t][j],f[t][j+]+g[x][j+]);
for(int j=d;j>=;--j) f[x][j]=min(f[x][j],f[x][j+]);
g[x][]=f[x][];
for(int j=;j<=d;++j) g[x][j]+=g[t][j-];
for(int j=;j<=d;++j) g[x][j]=min(g[x][j],g[x][j-]);
}
}
} int main()
{
int n,m,x;
read(n); read(d);
for(int i=;i<=n;++i) read(w[i]);
read(m);
while(m--) { read(x); use[x]=true; }
int u,v;
for(int i=;i<n;++i)
{
read(u); read(v);
add(u,v);
}
dfs(,);
printf("%d",g[][]);
return ;
}

bzoj千题计划272:bzoj4557: [JLoi2016]侦察守卫的更多相关文章

  1. bzoj千题计划300:bzoj4823: [Cqoi2017]老C的方块

    http://www.lydsy.com/JudgeOnline/problem.php?id=4823 讨厌的形状就是四联通图 且左右各连一个方块 那么破坏所有满足条件的四联通就好了 按上图方式染色 ...

  2. bzoj千题计划270:bzoj4559: [JLoi2016]成绩比较(拉格朗日插值)

    http://www.lydsy.com/JudgeOnline/problem.php?id=4559 f[i][j] 表示前i门课,有j个人没有被碾压的方案数 g[i] 表示第i门课,满足B神排名 ...

  3. bzoj千题计划281:bzoj4558: [JLoi2016]方

    http://www.lydsy.com/JudgeOnline/problem.php?id=4558 容斥原理 全部的正方形-至少有一个点被删掉的+至少有两个点被删掉的-至少有3个点被删掉的+至少 ...

  4. bzoj千题计划196:bzoj4826: [Hnoi2017]影魔

    http://www.lydsy.com/JudgeOnline/problem.php?id=4826 吐槽一下bzoj这道题的排版是真丑... 我还是粘洛谷的题面吧... 提供p1的攻击力:i,j ...

  5. bzoj千题计划280:bzoj4592: [Shoi2015]脑洞治疗仪

    http://www.lydsy.com/JudgeOnline/problem.php?id=4592 注意操作1 先挖再补,就是补的范围可以包含挖的范围 SHOI2015 的题 略水啊(逃) #i ...

  6. bzoj千题计划177:bzoj1858: [Scoi2010]序列操作

    http://www.lydsy.com/JudgeOnline/problem.php?id=1858 2018 自己写的第1题,一遍过 ^_^ 元旦快乐 #include<cstdio> ...

  7. bzoj千题计划317:bzoj4650: [Noi2016]优秀的拆分(后缀数组+差分)

    https://www.lydsy.com/JudgeOnline/problem.php?id=4650 如果能够预处理出 suf[i] 以i结尾的形式为AA的子串个数 pre[i] 以i开头的形式 ...

  8. bzoj千题计划304:bzoj3676: [Apio2014]回文串(回文自动机)

    https://www.lydsy.com/JudgeOnline/problem.php?id=3676 回文自动机模板题 4年前的APIO如今竟沦为模板,,,╮(╯▽╰)╭,唉 #include& ...

  9. bzoj千题计划292:bzoj2244: [SDOI2011]拦截导弹

    http://www.lydsy.com/JudgeOnline/problem.php?id=2244 每枚导弹成功拦截的概率 = 包含它的最长上升子序列个数/最长上升子序列总个数 pre_len ...

随机推荐

  1. python3 subprocess模块

    当我们在执行python程序的时候想要执行系统shell可以使用subprocess,这时可以新起一个进程来执行系统的shell命令,python3常用的有subprocess.run()和subpr ...

  2. ASP.NET Core采用Web Deploy方式发布到 Windows Server 2012 IIS上

    小白一枚,租个服务器,发布下网站,满足下好奇心,讲的粗糙,请大家谅解哈~ 1.配置服务器环境.这部分网上教程比较多. (1)开启IIS,参考其他博客的,担心的话,将Web服务器(IIS)全选哈~ (2 ...

  3. Json To CSharp

    This is a tools for generate json reader classes. In some case, when we get a json data, we hope to ...

  4. Catlike学习笔记(1.1)-使用Unity实现一个钟表

    最近发现『Catlike系列教程』觉得内容真的很赞,感觉有很多地方涉及到了我的知识盲点,如果真的可以照着做下来一遍的话应该收获颇丰.因为教程很长所以逐字翻译不太可能了(主要是翻译的太差).基本上就是把 ...

  5. python的闭包函数

    在一个外函数中定义了一个内函数,内函数里运用了外函数的临时变量,并且外函数的返回值是内函数的引用.这样就构成了一个闭包. #闭包函数的实例# outer是外部函数 a和b都是外函数的临时变量def o ...

  6. xss基础

    0x0 定义 总结: (1)     在页面显示 (2)     用户可控 满足以上两点就有可能存在xss 0x1反射型 0x2存储型 0x3 DOM型 与反射型相似 也是从get等参数传参 但 反射 ...

  7. Mininet安装

    Mininet 安装 根据SDNLAB上的实验进行安装.连接地址 需要注意的是切换到用户目录下进行clone github上的源码. 1.卸载之前安装的Mininet 最好是先到目录下看是否有这些文件 ...

  8. [转帖]2019 简易Web开发指南

    2019 简易Web开发指南     2019年即将到来,各位同学2018年辛苦了. 不管大家2018年过的怎么样,2019年还是要继续加油的! 在此我整理了个人认为在2019仍是或者将成为主流的技术 ...

  9. [转帖]在VMware ESXi服务器上配置NAT上网 需要学习一下。

    http://blog.51cto.com/boytnt/1292487 在使用VMware workstation的时候,我们经常以NAT的方式配置虚拟机的网络,与桥接方式相比,这样配置可以让虚拟机 ...

  10. [51CTO]服务器虚拟化开源技术主流架构之争

    服务器虚拟化开源技术主流架构之争 http://virtual.51cto.com/art/201812/589084.htm 大部分客户已经是KVM+OpenStack的架构了 我所见到的 工商云 ...