【364】SVM 通过 sklearn 可视化实现
先看下效果图:
# 先调入需要的模块 import numpy as np
import matplotlib.pyplot as plt
from sklearn import svm
import seaborn as sb # 生成几个数据点 data = np.array([
[0.1, 0.7],
[0.3, 0.6],
[0.4, 0.1],
[0.5, 0.4],
[0.8, 0.04],
[0.42, 0.6],
[0.9, 0.4],
[0.6, 0.5],
[0.7, 0.2],
[0.7, 0.67],
[0.27,0.8],
[0.5, 0.72]
]) target = [1] * 6 + [0] * 6 x_line = np.linspace(0, 1, 100)
y_line = 1 - x_line
plt.scatter(data[:6, 0], data[:6, 1], marker='o', s=100, lw=3)
plt.scatter(data[6:, 0], data[6:, 1], marker='x', s=100, lw=3)
plt.plot(x_line, y_line) # 定义计算域、文字说明等 C = 0.0001 # SVM regularization parameter, since Scikit-learn doesn't allow C=0
# linear_svc = svm.SVC(kernel='linear', C=C).fit(data, target) # create a mesh to plot in
h = 0.002
x_min, x_max = data[:, 0].min() - 0.2, data[:, 0].max() + 0.2
y_min, y_max = data[:, 1].min() - 0.2, data[:, 1].max() + 0.2
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h)) # title for the plots
titles = ['SVC with linear kernel',
'SVC with RBF kernel',
'SVC with polynomial (degree 3) kernel'] # RBF Kernel plt.figure(figsize=(16, 15)) for i, gamma in enumerate([1, 5, 15, 35, 45, 55]):
rbf_svc = svm.SVC(kernel='rbf', gamma=gamma, C=C).fit(data, target) # ravel - flatten
# c_ - vstack
# #把后面两个压扁之后变成了x1和x2,然后进行判断,得到结果在压缩成一个矩形
Z = rbf_svc.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape) plt.subplot(3, 2, i + 1)
plt.subplots_adjust(wspace=0.4, hspace=0.4)
plt.contourf(xx, yy, Z, cmap=plt.cm.ocean, alpha=0.6) # Plot the training points
plt.scatter(data[:6, 0], data[:6, 1], marker='o', color='r', s=100, lw=3)
plt.scatter(data[6:, 0], data[6:, 1], marker='x', color='k', s=100, lw=3) plt.title('RBF SVM with $\gamma=$' + str(gamma)) plt.show()
【364】SVM 通过 sklearn 可视化实现的更多相关文章
- SVM的sklearn实现
转载:豆-Metcalf 1)SVM-LinearSVC.ipynb-线性分类SVM,iris数据集分类,正确率100% """ 功能:实现线性分类支持向量机 说明:可以 ...
- SVM的sklearn.svm.SVC实现与类参数
SVC继承了父类BaseSVC SVC类主要方法: ★__init__() 主要参数: C: float参数 默认值为1.0 错误项的惩罚系数.C越大,即对分错样本的惩罚程度越大,因此在训练样本中准确 ...
- sklearn 可视化模型的训练测试收敛情况和特征重要性
show the code: # Plot training deviance def plot_training_deviance(clf, n_estimators, X_test, y_test ...
- 机器学习之sklearn——SVM
sklearn包对于SVM可输出支持向量,以及其系数和数目: print '支持向量的数目: ', clf.n_support_ print '支持向量的系数: ', clf.dual_coef_ p ...
- sklearn调参(验证曲线,可视化不同参数下交叉验证得分)
一 . 原始方法: 思路: 1. 参数从 0+∞ 的一个 区间 取点, 方法如: np.logspace(-10, 0, 10) , np.logspace(-6, -1, 5) 2. 循环调用cr ...
- [Example of Sklearn] - SVM usge
reference : http://www.csdn.net/article/2012-12-28/2813275-Support-Vector-Machine SVM是什么? SVM是一种训练机器 ...
- 支持向量机SVM知识梳理和在sklearn库中的应用
SVM发展史 线性SVM=线性分类器+最大间隔 间隔(margin):边界的活动范围.The margin of a linear classifier is defined as the width ...
- 支持向量机SVM——专治线性不可分
SVM原理 线性可分与线性不可分 线性可分 线性不可分-------[无论用哪条直线都无法将女生情绪正确分类] SVM的核函数可以帮助我们: 假设‘开心’是轻飘飘的,“不开心”是沉重的 将三维视图还原 ...
- 机器学习-Sklearn
Scikit learn 也简称 sklearn, 是机器学习领域当中最知名的 python 模块之一. Sklearn 包含了很多种机器学习的方式: Classification 分类 Regres ...
随机推荐
- (转)WebApi返回Json格式字符串
原文地址:https://www.cnblogs.com/elvinle/p/6252065.html WebApi返回json格式字符串, 在网上能找到好几种方法, 其中有三种普遍的方法, 但是感觉 ...
- DateTimepicker中的星期问题
开发机:win10 64+VS2013 客户机:win7 32bit 在项目中使用DateTimepicker,需要将时间获取到,然后转换为string,然后再转换为DateTime类型.开发机器上测 ...
- CSS中可以继承和不能继承的属性
一.无继承性的属性 1.display:规定元素应该生成的框的类型 2.文本属性: vertical-align:垂直文本对齐 text-decoration:规定添加到文本的装饰 text-shad ...
- tp5 post接到的json被转义怎么解决???
$data =input('post.');//用户唯一标识$goods = $data['goods']; $shopcuxiao=$data['shopcuxiao']; $goods=htmls ...
- angularjs的ng-class
<!--第一种 直接加变量--> <div ng-class="tempClass"></div> <!--第二种 用{{}} 包住的变量 ...
- 打包django项目
1.安装pip install pyinstaller2.在django项目目录下执行pyi-makespec -D manage.py # 生成manage.spec文件3.执行pyinstalle ...
- python if all
#encoding:utf-8 s=['1','9']sta='56789'# if all(t not in sta for t in s):# print staif all(t not ...
- 关于ioncube扩展的安装和使用
ioncube 是一个专业级的PHP加密解密工具 这里是按照此扩展的教程,安装以后就可以运行用ioncube加密的文件 引导安装说明:一.下载loader-wizard.php ioncube提供了一 ...
- Ignoring query to other database
Ignoring query to other database 自己今天刚遇到,进入MySQL的时候,输入show databases; 产生如下错误 错误提示 Ignoring query to ...
- idea 添加代码自动提示支持,已PHP扩展 swoole 为例
1,下载代码支持包 => swoole-ide-helper-en => https://github.com/eaglewu/swoole-ide-helper.git 2,如果安装了 ...