http://www.lydsy.com/JudgeOnline/problem.php?id=2877 (题目链接)

题意

  一个${n*m}$的矩阵,维护两个操作:给任意子矩阵${+val}$;问某一包含点${(X,Y)}$的矩阵内元素的gcd。

Solution

  左转题解,参见PoPoQQQ,写的蛮详细的,像我这种没写过树套树的都会了→_→。

  代码也是模着PoPoQQQ大爷的写的,边界真的好蛋疼。

  对于不能用以任意一点为差分中心的原因,我有一点自己的看法。我们考虑之所以差分后的数组的gcd与原数组的gcd相等是为什么,不是更相减损吗,考虑一维的情况,如果我们本来要求${gcd(a_2,a_3,a_4,a_5)}$,我们以${a_1}$为中心差分的话,那么就成了求解差分数组的${gcd(a_2-a_1,a_3-a_2,a_4-a_3,a_5-a_4)}$,这就不符合更相减损术了,因为里面莫名其妙混进了个${a_1}$。为了避免这种情况,我们以一定包含在询问矩阵内的${(X,Y)}$为中心差分,这就保证了差分后每一个询问矩阵中不包含在矩阵外的原矩阵的元素。也就是说,如果没有${(X,Y)}$一定包含在询问矩阵中这个条件的话,这个题应该是做不了的。

细节

  这里并没有给出${n,m}$的具体范围,所以我们需要使用黑科技读入矩阵。

  LL,边界的分类讨论注意别写错点的坐标。

代码

// bzoj2877
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxn=500010;
int n,m,Q,X,Y,rt,sz; struct segtree {int l,r,ls,rs,tree;LL val;}tr[maxn<<4];
struct array { //来自PoPoQQQ的黑科技
LL t[maxn];
LL* operator [] (int x) {return &t[(x-1)*m];}
}a; LL gcd(LL a,LL b) {
return b==0 ? a : gcd(b,a%b);
} namespace Col {
void build(int &k,int s,int t,int p) {
k=++sz;tr[k].l=s,tr[k].r=t;
if (s==t) {tr[k].val=a[p][s];return;}
int mid=(s+t)>>1;
build(tr[k].ls,s,mid,p);
build(tr[k].rs,mid+1,t,p);
tr[k].val=gcd(tr[tr[k].ls].val,tr[tr[k].rs].val);
}
void modify(int k,int p,LL val) {
int l=tr[k].l,r=tr[k].r,mid=(l+r)>>1;
if (l==r) {tr[k].val+=val;return;}
if (p<=mid) modify(tr[k].ls,p,val);
else modify(tr[k].rs,p,val);
tr[k].val=gcd(tr[tr[k].ls].val,tr[tr[k].rs].val);
}
LL query(int k,int s,int t) {
int l=tr[k].l,r=tr[k].r,mid=(l+r)>>1;
if (l==s && r==t) return tr[k].val;
if (t<=mid) return query(tr[k].ls,s,t);
else if (s>mid) return query(tr[k].rs,s,t);
else return gcd(query(tr[k].ls,s,mid),query(tr[k].rs,mid+1,t));
}
} namespace Row {
void merge(int &k,int k1,int k2,int s,int t) {
if (!k) k=++sz,tr[k].l=s,tr[k].r=t;
int mid=(s+t)>>1;
if (s==t) {tr[k].val=gcd(tr[k1].val,tr[k2].val);return;}
merge(tr[k].ls,tr[k1].ls,tr[k2].ls,s,mid);
merge(tr[k].rs,tr[k1].rs,tr[k2].rs,mid+1,t);
tr[k].val=gcd(tr[tr[k].ls].val,tr[tr[k].rs].val);
}
void build(int &k,int s,int t) {
k=++sz;tr[k].l=s,tr[k].r=t;
if (s==t) {Col::build(tr[k].tree,1,m,s);return;}
int mid=(s+t)>>1;
build(tr[k].ls,s,mid);
build(tr[k].rs,mid+1,t);
merge(tr[k].tree,tr[tr[k].ls].tree,tr[tr[k].rs].tree,1,m);
}
void modify(int k,int x,int y,LL val) {
int l=tr[k].l,r=tr[k].r,mid=(l+r)>>1;
if (l==r) {Col::modify(tr[k].tree,y,val);return;}
if (x<=mid) modify(tr[k].ls,x,y,val);
else modify(tr[k].rs,x,y,val);
LL lval=Col::query(tr[tr[k].ls].tree,y,y);
LL rval=Col::query(tr[tr[k].rs].tree,y,y);
LL mval=Col::query(tr[k].tree,y,y);
Col::modify(tr[k].tree,y,gcd(lval,rval)-mval);
}
LL query(int k,int x1,int y1,int x2,int y2) {
int l=tr[k].l,r=tr[k].r,mid=(l+r)>>1;
if (l==x1 && r==x2) return Col::query(tr[k].tree,y1,y2);
if (x2<=mid) return query(tr[k].ls,x1,y1,x2,y2);
else if (x1>mid) return query(tr[k].rs,x1,y1,x2,y2);
else return gcd(query(tr[k].ls,x1,y1,mid,y2),query(tr[k].rs,mid+1,y1,x2,y2));
}
}
using namespace Row; int main() {
scanf("%d%d%d%d%d",&n,&m,&X,&Y,&Q);
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++) scanf("%lld",&a[i][j]);
for (int i=1;i<=n;i++) {
for (int j=1;j<Y;j++) a[i][j]-=a[i][j+1];
for (int j=m;j>Y;j--) a[i][j]-=a[i][j-1];
}
for (int j=1;j<=m;j++) {
for (int i=1;i<X;i++) a[i][j]-=a[i+1][j];
for (int i=n;i>X;i--) a[i][j]-=a[i-1][j];
}
build(rt,1,n);
for (int op,x1,y1,x2,y2,i=1;i<=Q;i++) {
scanf("%d%d%d%d%d",&op,&x1,&y1,&x2,&y2);
if (op==0) {
x1=X-x1;y1=Y-y1;x2=X+x2;y2=Y+y2;
printf("%lld\n",abs(query(rt,x1,y1,x2,y2)));
}
else {
LL val;scanf("%lld",&val);
//左上端点(x1,y1)
if (x1<=X && y1<=Y && x1>1 && y1>1) modify(rt,x1-1,y1-1,val);
else if (x1<=X && y1>Y && x1>1) modify(rt,x1-1,y1,-val);
else if (x1>X && y1<=Y && y1>1) modify(rt,x1,y1-1,-val);
else if (x1>X && y1>Y) modify(rt,x1,y1,val);
//右上端点(x1,y2)
if (x1<=X && y2>=Y && x1>1 && y2<m) modify(rt,x1-1,y2+1,val);
else if (x1<=X && y2<Y && x1>1) modify(rt,x1-1,y2,-val);
else if (x1>X && y2>=Y && y2<m) modify(rt,x1,y2+1,-val);
else if (x1>X && y2<Y) modify(rt,x1,y2,val);
//左下端点(x2,y1)
if (x2>=X && y1<=Y && x2<n && y1>1) modify(rt,x2+1,y1-1,val);
else if (x2<X && y1<=Y && y1>1) modify(rt,x2,y1-1,-val);
else if (x2>=X && y1>Y && x2<n) modify(rt,x2+1,y1,-val);
else if (x2<X && y1>Y) modify(rt,x2,y1,val);
//右下端点(x2,y2)
if (x2>=X && y2>=Y && x2<n && y2<m) modify(rt,x2+1,y2+1,val);
else if (x2>=X && y2<Y && x2<n) modify(rt,x2+1,y2,-val);
else if (x2<X && y2>=Y && y2<m) modify(rt,x2,y2+1,-val);
else if (x2<X && y2<Y) modify(rt,x2,y2,val); if (x1<=X && x2>=X) {
//左端点(X,y1)
if (y1<=Y && y1>1) modify(rt,X,y1-1,-val);
else if (y1>Y) modify(rt,X,y1,val);
//右端点(X,y2)
if (y2>=Y && y2<m) modify(rt,X,y2+1,-val);
else if (y2<Y) modify(rt,X,y2,val);
} if (y1<=Y && y2>=Y) {
//上端点
if (x1<=X && x1>1) modify(rt,x1-1,Y,-val);
else if (x1>X) modify(rt,x1,Y,val);
//下端点
if (x2>=X && x2<n) modify(rt,x2+1,Y,-val);
else if (x2<X) modify(rt,x2,Y,val);
} if (x1<=X && x2>=X && y1<=Y && y2>=Y) modify(rt,X,Y,val);
}
}
return 0;
}

【bzoj2877】 Noi2012—魔幻棋盘的更多相关文章

  1. BZOJ2877 NOI2012魔幻棋盘(二维线段树)

    显然一个序列的gcd=gcd(其差分序列的gcd,序列中第一个数).于是一维情况直接线段树维护差分序列即可. 容易想到将该做法拓展到二维.于是考虑维护二维差分,查询时对差分矩阵求矩形的gcd,再对矩形 ...

  2. [BZOJ2877][NOI2012]魔幻棋盘(二维线段树)

    https://blog.sengxian.com/solutions/bzoj-2877 注意二维线段树的upd()也是一个O(log n)的函数(pushdown()应该也是但没写过). #inc ...

  3. BZOJ2877 [Noi2012]魔幻棋盘

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000 作者博客:http://www.cnblogs.com/ljh2000-jump/ ...

  4. BZOJ2877:[NOI2012]魔幻棋盘

    浅谈树状数组与主席树:https://www.cnblogs.com/AKMer/p/9946944.html 题目传送门:https://lydsy.com/JudgeOnline/problem. ...

  5. 2877: [Noi2012]魔幻棋盘 - BZOJ

    DescriptionInput 第一行为两个正整数N,M,表示棋盘的大小. 第二行为两个正整数X,Y,表示棋盘守护者的位置. 第三行仅有一个正整数T,表示棋盘守护者将进行次操作. 接下来N行,每行有 ...

  6. NOI2012 魔幻棋盘

    http://www.lydsy.com/JudgeOnline/problem.php?id=2877 二维线段树. 好恶...... B类数据: 棋盘是一维的. 我们有一个结论: $gcd(a_{ ...

  7. 题解 洛谷 P2086 【[NOI2012]魔幻棋盘】

    先考虑只有一维的情况,要求支持区间加和求区间 \(\gcd\),根据 \(\gcd\) 的性质,发现: \[ \gcd(a_1,a_2,a_3,\ldots a_n)=\gcd(a_i,a_2-a_1 ...

  8. 数据结构(二维线段树,差分): NOI2012 魔幻棋盘

    貌似想复杂了…… #include <iostream> #include <cstring> #include <cstdio> #define mid ((l+ ...

  9. 【NOI2012】魔幻棋盘

    Description 将要读二年级的小 Q 买了一款新型益智玩具——魔幻棋盘,它是一个N行M列的网格棋盘,每个格子中均有一个正整数.棋盘守护者在棋盘的第X行Y列(行与列均从1开始编号) 并且始终不会 ...

随机推荐

  1. Java基础系列篇:JAVA多线程 并发编程

    一:为什么要用多线程: 我相信所有的东西都是以实际使用价值而去学习的,没有实际价值的学习,学了没用,没用就不会学的好. 多线程也是一样,以前学习java并没有觉得多线程有多了不起,不用多线程我一样可以 ...

  2. mysql事务,select for update,及数据的一致性处理

    在MySQL的InnoDB中,预设的Tansaction isolation level 为REPEATABLE READ(可重读) 在SELECT 的读取锁定主要分为两种方式: SELECT ... ...

  3. Mac 如何显示隐藏文件夹并设置快捷键

    通过在终端运行命令可以控制隐藏文件是否显示: 输入defaults write com.apple.finder AppleShowAllFiles NO 就不显示, 输入defaults write ...

  4. 20155301 Exp4 恶意代码分析

    20155301 Exp4 恶意代码分析 实践目标 (1) 是监控你自己系统的运行状态,看有没有可疑的程序在运行. (2) 是分析一个恶意软件,就分析Exp2或Exp3中生成后门软件:分析工具尽量使用 ...

  5. java 对象是可以判空的

    比如这里存xml,这里判断了一下element是否为空,来避免空指针异常,推荐用guava的optional判空

  6. Java 多线程之 Thread 类 和 Runnable 接口初步使用

    目录 Thread 类 Thread之定义线程类 Thread之开启线程 Runnable 接口 Runnable 之定义线程类 Runnable 之开启线程 @ Thread 类 Thread 类是 ...

  7. AngularJS 的异步服务测试与Mocking

    测试 AngularJS 的异步服务 最近,在做项目时掉进了 AngularJS 异步调用 $q 测试的坑中,直接躺枪了.折腾了许久日子,终于想通了其中的道道,但并不确定是最佳的解决方案,最后还是决定 ...

  8. OpenGL学习(2)——绘制三角形(补)

    对上一篇的补充,通过绘制三角形来完成矩形的绘制.此外,完成章节后练习. 绘制矩形 一个矩形由两个三角形组成,因此绘制矩形需要绘制两个三角形,一共6个顶点,其中2个顶点重复画了两次. 为了减小开销,仅储 ...

  9. LeetCode-37.解数独

    编写一个程序,通过已填充的空格来解决数独问题. 一个数独的解法需遵循如下规则: 数字 1-9 在每一行只能出现一次. 数字 1-9 在每一列只能出现一次. 数字 1-9 在每一个以粗实线分隔的 3x3 ...

  10. Web Workers文档

    Web Worker为Web内容在后台线程中运行脚本提供了一种简单的方法.线程可以执行任务而不干扰用户界面.此外,他们可以使用XMLHttpRequest执行 I/O  (尽管responseXML和 ...